

Answer any three from questions 1 to 4. Each questions carries 2 marks.

1. In the figure $\mathrm{AB}=\mathrm{AD}, \angle A=60^{\circ}, \angle C=150^{\circ}$ show that the circle centred at A and radius

AB

a) Passes through the point ' $D$ '?
b) Passes through the point ' $C$ '?
2. The age of 10 members of a club are $20,25,22,32,42,27,35,27,35 \& 30$. Find median age.
3. The algebraic form of $A S$ is $5 n+3$
a) What is the first form of the sequence?
b) What will be the remainder if the terms of the sequences are divided by 5 ?
4. Sum of first $n$ terms of $A S$ is $2 n^{2}+3 n$
a) Find first term
b) Find algebraic form of AS

## Answer any 5 from the questions 5 to 11. Each questions carries 3 marks.

5. Draw a circle with radius 4 cm . draw a triangle with two of its angle $65^{\circ}$ and $78^{\circ}$ and all vertices on the circle.
6. a) Write the sequence of odd numbers greater than 1 .
b) What is the algebraic form of this sequence?
7. Consider the Polynomial $p(x)=x^{2}-4 x+3$
a) Check whether $x-1$ is a factor of $p(x)$
b) Find $p(2), p(x)-p(2)$
c) Find one factor of polynomial $p(x)-p(2)$
8. In the figure, $P$ is the centre of an ex circle of triangle $A B C$, if $\angle A B C=40^{\circ}$ and $\angle B A C=80^{\circ}$.
find the angles of triangle APC.

9. In triangle $A B C$, the length of $A P$ is 10 cm . What is the length of $B P$ ? What is the length of $P C$ ? Calculate the length of $B C$ ?

10. $A B C D$ is a parallelogram. $A B=8 \mathrm{~cm} A D=4 \mathrm{~cm} \angle B=120^{\circ}$.

a) What is $\angle D$ ?
b) What is the perpendicular distance from $D$ to $A B$ ?
c) What is the area of $A B C D$ ?
11. Find the slope of line joining $(2,4)$ and $(4,7)$. Write the co-ordinate of another point on the line. Check whether $(5,8)$ is on this line.

## Answer any 7 from questions 12 to 21. Each carries 4 marks.

12. One is asked to say a three digit number. What is a probability that
a) How many three digit numbers?
b) All the digits of the number are same?
c) The number is multiple of ' 6 '?
13. The sum of first 9 terms of AS is 45 and sum of first 18 terms is 171 .
a) The sum of its $10^{\text {th }}$ to $18^{\text {th }}$ terms?
b) What is its $5^{\text {th }}$ term?
c) Find its $14^{\text {th }}$ term?
d) Find the sum of $5^{\text {th }}$ to $14^{\text {th }}$ terms?
14. In the picture the centre of the circle is the origin. $A \& B$ are points on the circle. $O A=6$ cm . what is the co-ordinates of $A \& B$ ?

15. If $x$ is a natural number.
a) What number is to be added to $x^{2}+6 x$ to get a perfect square?
b) If $x^{2}+a x+16$ is a perfect square which number is ' $a$ '?
c) If $x^{2}+a x+16$ is a perfect square , Prove that $\mathrm{a}^{2}=46$
16. In the figure $C, D$ are points on the circle. $A D$ is a diameter of the circle $\angle C=30^{\circ}, A B=4$ $\mathrm{cm}, \angle \mathrm{A}=70^{\circ}, \angle B=80^{\circ}(\sin 70=0.93, \cos 70=0.84, \tan 70=2.74, \sin 80=0.98, \cos 80=$ $0.17, \tan 70=5.14)$

a) $\angle D=$ ?
b) $\angle \mathrm{ABD}=$ ?
c) What is the length of the diameter?
d) What is the length of $B C$ ?
17. One lateral face of a square pyramid is giving the picture. If all angles of the triangle in the picture are equal

a) What is the length of the edges of the pyramid?
b) What is its slant height?
c) What is its height?
d) What is the ratio of slant height and height?
18. The table below shows the workers in factory sorted according to their daily wages.

| Daily wage | Number o workers |
| :--- | :--- |
| $300-400$ | 4 |
| $400-500$ | 6 |
| $500-600$ | 10 |
| $600-700$ | 8 |
| $700-800$ | 4 |
| $800-900$ | 3 |

a) If the workers are arranged in increasing order of daily wages, what is the position of the worker whose wage is median?
b) What is assumed to be the daily wages of $11^{\text {th }}$ worker?
c) Find the median wage?
19. $A(-2,1), C(10,10)$ are two points in a line. $B$ lies $b / w A \& C . A B: A C=1: 3$.
a) Find length of $A B$ ?
b) Find the co-ordinates of $B$ ?
c) Write the equation of $A B$ ?
d) Find the point where line cut $x$ axis ?
20. In the polynomial $p(x)=x^{2}+6 x+k$
a) If $\mathrm{k}=-10$, prove that $p(x)$ can be written as the product of two first degree polynomials.
b) If $\mathrm{k}=10$ prove that $p(x)$ cannot be written as the product of two first degree polynomials.
c) What is the largest number k for which $p(x)$ can be written as the product of two first degree polynomials.?
21. The length of one side of a square is 4 cm more than the length of the side of another square. The sum of areas of these two squares is $400 \mathrm{~cm}^{2}$. Find the length of the sides of each square?

## Answer any 5 from questions 22 to 28. Each carries 5 marks.

22. A man standing on the top of a light house see a ship approaching the sea shore at an angle of depression of $22^{\circ}$. After the ship has travelled 100 m more towards the sea shore, he sees it an angle of depression of $31^{\circ}$. the ship stop there.
a) Draw a rough sketch.
b) How far is the ship from the light house?
c) Find the height of light house?

$$
\left(\tan 22^{\circ}=0.4, \tan 31^{\circ}=0.6\right)
$$

23. Draw a triangle of sides $6 \mathrm{~cm}, 7 \mathrm{~cm}, \& 8 \mathrm{~cm}$. Draw a circle which touches all sides of the triangle and measure it radius.
24. A cone is made from sector of radius 10 cm and central angle $216^{\circ}$.
a) What is the slant height and radius of cone?
b) Find volume of the cone?
25. A circle with centre $(3,4)$ passes through the origin.
a) What is the radius of the circle?
b) If a point in the circle is ( $x, y$ ), write the relation $b / w x \& y$ ?
c) Check whether the points $(-2,1)$ lies on this circle?
26. In triangle $A B C, A B=8 \mathrm{~cm}, B C=6 \mathrm{~cm}, \angle B=90^{\circ}$

a) Find the area o triangle ABC ?
b) Find the radius of its incircle?
c) Find the length of $A Q$ ?
d) Find $A Q \times Q C$ ?
27. Consider the AS 7, 11, 15, ...
a) What is its $20^{\text {th }}$ term?
b) Find the sum of its first 20 terms.
c) Is the sum of any two terms of this sequence will be a term in this sequence. Why?
28. In the figure chord $B C$ is extended to $P$. $P A$ is the tangent from $P . A Q$ is the bisector of $\angle B A C$.

a) Write two pairs of equal angles from the figure?
b) IF $\angle \mathrm{PAC}=\mathrm{x}$ and $\angle \mathrm{PCA}=\mathrm{y}$

Prove that $\angle B A C=y-x$
c) Prove that $\angle P A Q=\frac{x+y}{2}$
29. In the right angle triangle ABC
$\sin A=\frac{B C}{A C}, \cos A=\frac{A B}{A C}$
$(\sin A)^{2}+(\cos A)^{2}=\left(\frac{B C}{A C}\right)^{2}+\left(\frac{A B}{A C}\right)^{2}$
$=\frac{B C^{2}+A B^{2}}{A C^{2}}=\frac{A C^{2}}{A C^{2}}=1$
$(\sin A)^{2}+(\cos A)^{2}=1$
This can be written as $\sin ^{2} \mathrm{~A}+\cos ^{2} \mathrm{~A}=1$
Similarly $\sin ^{2} \mathrm{C}+\cos ^{2} \mathrm{C}=1$
In general for any $x \sin ^{2} x+\cos ^{2} x=1$
a) $\sin ^{2} 30+\cos ^{2} 3=$ $\qquad$
b) $\sin ^{2} 50+\cos ^{2} 50=$ $\qquad$
c) $\sin ^{2} 40=1-\cos ^{2} x$. then $x=$ $\qquad$
d) $1-\sin ^{2} x=\cos ^{2} 70$. then $x=\ldots \ldots . . . .$. ?
e) If $\sin \mathrm{A}=\mathrm{k}$. then $\cos \mathrm{A}=$ $\qquad$
f) If $\cos \mathrm{A}=\mathrm{P}$, then $\sin \mathrm{A}=$ $\qquad$


