PRE-BOARD EXAMINATION, FEBRUARUY-2018

CLASS: X Div: \qquad MATHEMATICS
Date \qquad ..
都
Name \qquad

General Instructions

(i) All questions are compulsory
(ii) The question paper consists of 30 questions divided into four sections A, B, C and D.
(iii) Section A contains 6 questions of 1 mark each. Section B contains 6 questions of 2 marks each. Section C contains 10 questions of 3 marks each. Section D contains 8 questions of 4 marks each.
(iv) Use of calculators is not permitted.

SECTION A

Question numbers 1 to 6 carry 1 mark each

1. $\operatorname{IfLCM}(26,169)=338$, then find the $\operatorname{HCF}(26,169)$?
2. Find a quadratic polynomial if the sum and product of its zeroes are $\frac{1}{5},-3$ respectively.
3. In an AP if $d=0, n=107, a=-2.5$ then find a_{n} ?
4. Find the coordinates of the point on y-axis which is nearest to the point $(-3,2)$.
5. In the given figure if $D E \| B C$, then find the value of x ?

6. If $\tan \theta=\sin 30^{\circ}+\cos 45^{\circ} \sin 45^{\circ}$, then find the value of θ ?

SECTION B

Question numbers 7 to 12 carry 2 marks each.

7. Use Euclid's division algorithm to find the HCF of 1260,7344
8. If the probability of winning a game is 0.7 , what is the probability of losing it?
9. Find the value of x and y in the given figure showing a rectangle?

10. If the distance of the point $\mathrm{P}(\mathrm{x}, \mathrm{y})$ from the points $\mathrm{A}(5,1)$ and $\mathrm{B}(-1,5)$ is equal, show that $3 \mathrm{x}=2 \mathrm{y}$.
11. A bag contains 5 red balls, 8 white balls, 4 green balls and 7 black balls. A ball is drawn at random from the bag. Find the probability that it is not green?
12. Find the value of k for which $(3 k+4), 7 k$ and $(9 k+4)$ are in A.P.

SECTION C

Question numbers 13 to 22 carry 3 marks each
13. Is square root of every non-square number always irrational? Find the smallest natural number which divides 2205 to make its square root a rational number?
14. Obtain all zeroes of the polynomial $2 x^{4}-10 x^{3}+5 x^{2}+15 x-$

12 , if two of its zeroes are $\sqrt{\frac{3}{2}},-\sqrt{\frac{3}{2}}$
15. The sum of two numbers is 15 . If the sum of their reciprocals is $\frac{3}{10}$, find the numbers?
16. Prove that any line parallel to parallel sides of a trapezium divides the non parallel sides proportionality (i.e., in the same ratio).
17. From an external point P , tangents PA and PB are drawn to a circle with centre O . If CD is the tangents to the circle at a point E and $\mathrm{PA}=14 \mathrm{~cm}$, find the perimeter of triangle PCD ?

18. Prove the following identities, where the angles involved are acute angles for which the expressions are defined
$(\sin A+\operatorname{cosec} A)^{2}+(\cos A+\sec A)^{2}=7+\tan ^{2} A+\cot ^{2} A$
19. Vihaan divided a pizza of diameter 21 cm into eight equal sectors and distributed them among his friends. Calculate
(i) Angle of each sector.
(ii) Area of each sector.
20. A cylindrical tub, whose diameter is 12 cm and height 15 cm , is full of ice-cream. The whole ice-cream is to be divided into 10 children in equal ice-cream cones, with conical base surmounted by hemispherical top. If the height of conical portion is twice the diameter of base, find the diameter of conical part of ice-cream cone.
21. The following distribution gives the daily wages of workers of a factory. Find the mean daily wages of a worker.

Daily wages	More than 300	More than250	More than200	More than150	More than100	More than50	More than0
No. of workers	0	12	21	44	53	59	60

22. Kiran wants to purchase a plot of land. He has the choice of buying any one of the two plots available at the same cost, as shown in the figures.
(i) Find the area of two plots?
(ii) Kiran decides to purchase triangular plot. Why?

SECTION D

Question numbers 23 to 30 carry 4 marks each.

23. Two poles of equal heights are standing opposite to each other on either side of the road which is 80 m wide. From a point P between them on the road, the angle of elevation of the top of a pole is 60° and the angle of depression from the top of another pole at point P is 30°. Find the heights of the poles and the distances of the point P from the poles?
24. Construct a triangle ABC in which $\mathrm{AB}=5 \mathrm{~cm}, \mathrm{BC}=6 \mathrm{~cm}$ and $\mathrm{AC}=7 \mathrm{~cm}$.Now construct
25. The median of the following data is 52.5 .Find the values of x and y , if the total frequency is 100

Class	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$	$80-90$	$90-100$
Freq	2	5	x	12	17	20	y	9	7	4

26. An observer 1.5 m tall is 28.5 m away from a tower 30 m high. Determine the angle of elevation of the top of the tower from his eye?
27. The height of a cone is 40 cm . A small cone is cut off at the top by a plane parallel to the base. If its volume be $\frac{1}{64}$ of the volume of the given cone, at what height above the base is the section made?
28. Find the sum of all two digit odd positive numbers?
29. Prove that the ratios of the areas of two similar triangles are equal to the ratio of the squares of their corresponding sides?
30. Show graphically that the pair of equations $3 x-y=2: 9 x-3 y=6$ has infinitely many solutions.
