SECOND PRE-BOARD EXAMINATION (2017-18)
 CLASS: XII

Subject: MATHEMATICS
Time allowed: 3 Hours.
General instructions:
(1) All questions are compulsory.
(2) This question paper contains 29 questions.
(3) Question 1- 4 in Section A are very short-answer type questions carrying 1 mark each.
(4) Question 5-12 in Section B are short-answer type questions carrying 2 mark each.
(5) Question 13-23 in Section C are long-answer-I type questions carrying 4 mark each.
(6) Question 24-29 in Section D are long-answer-II type questions carrying 6 mark each.

Section - A

Questions 1 to 4 carry 1 mark each.

1.If $\left|A^{-1}\right|=\frac{1}{3}$ and $A_{3 \times 3}$ matrix then find $|2 A|$.
2.If $A=\{1,2,3\}$ add minimum number of ordered pairs to the relation $R=\{(1,2),(23)\}$ so that it is symmetric and transitive.
3.Find the value of $\tan ^{-1}\left(\tan \frac{13 \pi}{6}\right)+\operatorname{Cos}^{-1}\left(\operatorname{Cos} \frac{7 \pi}{6}\right)$.
4.If $a \hat{\imath}+3 \hat{\jmath}-b \hat{k}$ is parallel to vector obtained by joining the points $(1,2,3)$ and $(2,-4,1)$ then find a, b.

Section - B

Questions 5 to 12 carry 2 marks each.
Page 1 of 4
5.If $A=\left[\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right]$ then find k if $A^{2}=k A-I$, where $\mathrm{I}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
6.If $f(x)=\left\{\begin{array}{cc}a x+b & \text { if } x<3 \\ c x+3 & \text { if } x \geq 3\end{array}\right.$ is differentiable at $\mathrm{x}=3$. Find $\mathrm{a}, \mathrm{b}, \mathrm{c}$.
7.If $x=\sqrt{a^{\operatorname{Sin}^{-1} t}}, y=\sqrt{a^{\operatorname{Cos}^{-1} t}}$, show that $\frac{d y}{d x}=\frac{-y}{x}$.
8.Evaluate $\int \frac{\operatorname{Cos} 2 x}{(\operatorname{Cos} x+\operatorname{Sin} x)^{2}} \mathrm{dx}$
9.Evaluate $\int_{0}^{2} e^{x} d x$ as the limit of a sum.
10.Find differential equation of family of circles touching the coordinate axes in the first quadrant.
11.Find the volume of the parallelepiped whose co initials side vectors are given by $\hat{\imath}+2 \hat{\jmath}+2 \hat{k}, 2 \hat{\imath}-\hat{\jmath}+\hat{k}$ and $3 \hat{\imath}+2 \hat{k}-\hat{\jmath}$.
12.A die is thrown twice and the sum of the numbers appearing is observed to be 6 . What is the conditional probability that the number 4 has appeared at least once?

Section-C

Questions 13 to 23 carry 4 marks each.

13. Consider $f: R_{+} \rightarrow\left[-5, \infty\right.$ [given by $f(x)=9 x^{2}+6 x-5$. Show that f is invertible hence find $f^{-1}(x)$.
14.Solve the equation $2 \tan ^{-1}(\operatorname{Cos} x)=\tan ^{-1}(2 \operatorname{Cosec} x)$.
15.Prove that $\left|\begin{array}{ccc}a+b x & c+d x & p+q x \\ a x+b & c x+d & p x+q \\ u & v & w\end{array}\right|=\left(1-x^{2}\right)\left|\begin{array}{lll}a & c & p \\ b & d & q \\ u & v & w\end{array}\right|$ OR
Prove that $\left|\begin{array}{ccc}3 a & b-a & c-a \\ a-b & 3 b & c-b \\ a-c & b-c & 3 c\end{array}\right|=3(a+b+c)(a b+b c+c a)$
16.Differentiate the function $y=\operatorname{Sin}^{-1}\left(\frac{2^{x+1}}{1+4^{x}}\right)$.
17.Find the slope of the tangent to the curve $x=t^{2}+3 t-8, y=2 t^{2}-2 t-5$ at the point $(2,-1)$.
18.Evaluate $\int_{0}^{\pi} \frac{x}{a^{2} \operatorname{Cos}^{2} x+b^{2} \operatorname{Sin}^{2} x} d x$

OR

Page 2 of 4

Evaluate $\int \frac{e^{\tan ^{-1} x}}{\left(1+x^{2}\right)^{2}} \mathrm{dx}$
19.Express the vector $\vec{a}=5 \hat{\imath}-2 \hat{\jmath}+5 \hat{k}$ as the sum of two vectors such that one is parallel to the vector $\vec{b}=3 \hat{\imath}+\hat{k}$ and the other is perpendicular to \vec{b}.
20.Evaluate $\int\left\{\log (\log x)+\frac{1}{(\log x)^{2}}\right\} d x$
21.Find the angle between the lines $\frac{x-1}{2}=\frac{y}{3} ; z=6$ and $x=2 ; \frac{y}{1}=\frac{z}{2}$. Find the shortest distance between them if they are skew lines.
22.The probability of a shooter hitting a target is $3 / 4$. How many minimum number of times must he/she fire so that the probability of hitting the target at least once is more than 0.99 ?

OR

Find the probility distribution of the number of white balls drawn in a random draw of 3 balls without replacement from a bag containing 4 white and 6 red balls. Also find the mean and variance of the distributioin.
23.Assume that the chances of a patient having a heart attack is 40%. It is also assumed that the meditation and yoga course reduce the risk of heart attack by 30% and prescription of certain drug reduces its chances by 25%. At a time a patient can choose any one of the two options and patient selected at random suffers a heart attack. Find the probability that the patient followed a course of meditation and yoga?

Section - D

Questions 24 to 29 carry 6 marks each.

24.If $A^{-1}=\left[\begin{array}{ccc}3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2\end{array}\right]$ and $B=\left[\begin{array}{ccc}1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1\end{array}\right]$ then find $(A B)^{-1}$.
25.A window has the shape of a rectangle surmounted by an equilateral triangle. If the perimeter of the window is 12 m ., find the dimensions of the rectangle that will produce the largest area of the window.
26.Using integration, compute the area bounded by the line $x+2 y=2, y-x=1$ and $2 x+y=7$

Find the ratio of the areas in to which curve $y^{2}=6 x$ divides the region bounded by $x^{2}+y^{2}=16$
27. Show that the differential equation $2 y e^{x / y} d x+\left(y-2 x e^{x / y}\right) d y=0$ is homogeneous and find its particular solution when $\mathrm{x}=0$ when $\mathrm{y}=1$.

OR

Find the particular solution of the differential equation

$$
\frac{d y}{d x}+y \operatorname{Cot} x=2 x+x^{2} \operatorname{Cot} x \text { given that } y=0, \text { when } x=\frac{\pi}{2} .
$$

28.Find the equation of the plane containing the lines $\frac{x-1}{1}=\frac{y-1}{2}=\frac{z}{-1}$ and $\frac{x}{-1}=\frac{y-2}{1}=\frac{z+2}{-2}$. Also find the distance of this plane from the point $(1,1,1)$. OR
Prove that the image of the point $(3,-2,1)$ in the plane $3 x-y+4 z=2$ lies on the plane, $\mathrm{x}+\mathrm{y}+\mathrm{z}+4=0$.
29.(a) Maximise and minimise $\mathrm{Z}=5 \mathrm{x}+10 \mathrm{y}$ for $x+2 y \leq 120, x+y \geq 60$

$$
\begin{equation*}
x-2 y \geq 0, x \geq 0, y \geq 0 \tag{4Marks}
\end{equation*}
$$

(b)A man has Rs. 1500 for purchase of rice and wheat. A bag of rice and a bag of wheat costs Rs. 180 and Rs. 120, respectively. He has storage capacity of 10 bages only. He earns a profit of Rs. 11 and Rs. 9 per bag of rice and wheat, respectively. Formulate an LPP to maximize the profit.

