PRE BOARD EXAMINATION, JANUARY 2020 Mathematics

Class:	Х
Date:	12/01/2020

ţ,

Max. Marks: 80 Time: 3 hrs

General Instructions:

- 1. All the questions are compulsory.
- 2. This question paper comprises 4 printed pages.
- The question paper contains 40 questions divided into four sections A, B, C and D. Section-A comprises 20 questions of 1 mark each; Section-B, 6 questions of 2 marks each; Section-C, 8 questions of 3 marks each and Section-D, 6 questions of 4 marks each.
- 4. There is no overall choice. However, an internal choice has been provided in two questions of 1 mark each, two questions of 2 marks each, three questions of 3 marks each, and three questions of 4 marks each. You have to attempt only one of the alternatives in all such questions.
- 5. Use of calculator is not permitted.

)			S	ection A						
C	hoos	e the most appropria	ate answers for the fo	llowing questions.	$10 \times 1 = 10$					
	1.	Which of the followi	ng relation is correct?							
		a) 2mean = 3median	+ mode	b) $3mode = 2mean + i$	median					
		c) $3 \text{median} = \text{mean} + $	- 2mode	d) mode = 3 median $- 2$ mean						
	2.									
		a) <i>a</i> < 2	b) <i>a</i> > 2	c) $a > \pm 2$	d) $a < \pm 2$					
	3.	The distance between	n the points(0,0) and	(a, b) is						
		a) $\sqrt{a+b}$	b) $\sqrt{a-b}$	c) $\sqrt{a^2 - b^2}$	d) $\sqrt{a^2 + b^2}$					
	4.	Two tangents TP and	l TQ drawn from an ex	sternal point T to a circl	le of centre O. If $\angle PTQ = 56^{\circ}$ and					
	$\angle POQ = 6x - 2$, then value of x is,									
		a) 21	b) 11	c) 19	d) 29					
	5.	The graph of $x - 5 =$								
)		a) Parallel to $y - ax$	is	b) Parallel to $x - axis$						
Ļ		c) Passes through ori	gin	d) both (a) and (c)						
	б.	Which of the followi	ng is true for $\frac{27}{18}$?							
		a) Terminating decimal expansion								
		b) Non terminating repeating decimal expansionc) Non terminating non repeating decimal expansion								
	_	d) None of the above								
	7.	7. If α and β are the zeros of the polynomial $x^2 - 4x + 2 = 0$, then the value of								
		$(\alpha + 1)(\beta + 1)$ is								
	•	a) 0	b) 3	c) 6	d) 7					
	8.	When sum of probab	oilities of two events an	re equal to 1, then the ev	vents are called					
	ò	(a) Equal trials	b) Unique events	c) Equally likely	d) Complementary					
	9.	9. In a right angle triangle ABC, $\angle C = 90^\circ$, then $\sec(A+B) =$								
		a) 0	b) 1	c) √2	d) Not defined					
	10. The ratio of length of a rod and its shadow is 1: $\sqrt{3}$. Then the angle of elevation of the sun is									
		a) 30°	b) 60°	c) 45°	d) 90°					
			Р	age 1 of 4						

Fill in the blanks.

11. The pair of equations y = 0 and y = -7 has solutions.

 $5 \times 1 = 5$

P

D 3cmR

5cm

6cm

4cm

OR

Two lines given to be parallel. The equation of one of the lines is 4x + 3y = 14, then the equation of a second line is _____.

- 12. $n^2 1$ is divisible by 8, if n is an _____ integer.
- 13. In any two triangles if the corresponding sides are equal then the triangles are _____.
- 14. If x + 1, 3x 2 and 4x + 2 are in arithmetic progression, then the value of x is
- 15. If two consecutive days of a week are chosen, then probability of getting Friday will be

Answer the following.

- 16. The radius of a circle and the side of a square are equal. What ratio of area of circle is area of square?
- 17. If the midpoint of a line segment joining the points A(x, y + 1) and A(x + 1, y 3) is C(5, -2), then find x.
- 18. Name the angle formed by the line of sight with the horizontal when object is viewed as below the horizontal level.
- 19. The quadrilateral ABCD circumscribes the circle as given in the adjacent figure. Find the perimeter of the quadrilateral ABCD.
- 20. Find the HCF(3000, 525) by division method.

ÖŔ

Define Euclid's division lemma.

Section B

- 21. A die is thrown twice. Find the probability, which verifies the equation 3x + 2y = 13, where x and y are the outcomes of the first and the second throws respectively.
- 22. If $\alpha + \beta = 3$ and $\alpha \beta = 1$, then find the quadratic equation whose zeros are α and β .

OR

Find the nature of the roots of quadratic polynomial $p(x) = 3x^2 - 3\sqrt{3}x + 2$.

- 23. In $\triangle ABC$, AB = 3cm, BC = 2cm and CA = 2.5cm. If $\triangle ABC \sim \triangle DEF$ and EF = 4cm, then, find perimeter of $\triangle DEF$.
- 24. A metallic sphere of radius 4.2cm is melted and recast into the shape of a cylinder of radius 6cm. Find the height of the cylinder.
- 25. If A, B, C are the interior angles of a $\triangle ABC$, show that:

$$cosec\left(\frac{B+C}{2}\right) = sec\left(\frac{A}{2}\right)$$

If $tan(A + B) = \sqrt{3}$ and $tan(A - B) = \frac{1}{\sqrt{3}}$, then find the value of A and B where A and B are acute angles.

26. Find the mean of the following distribution.

Classes	0 - 10	10 - 20	20 - 30	30 - 40	40 - 50
Frequency	8	7	12	13	10 50

Section C

27. In a school, the duration of a period of junior section is 30 minutes and in senior section is 40minutes. If the first bell for each section rings at 8:30am, when will the two bells ring together again?

OR

Show that $5 + 2\sqrt{3}$ is irrational.

28. Find all the zeros of the polynomial $f(x) = 2x^4 - 2x^3 - 7x^2 + 3x + 6$, if two of its zeros are $\sqrt{\frac{3}{2}}$ and

 $-\sqrt{\frac{3}{2}}$.

29. A circle is inscribed in a triangle ABC, having sides AB = 8cm,

BC =12cm and AC = 10cm. Find the length of AD, BE and CF.

OR

Two tangents AP and BP are drawn to a circle of centre O from

an external point T. Prove that $\angle APB = 2 \angle OAB$.

- 30. A manufacturer of Tablets produced 550 Tabs in the third month and 650 Tabs in the seventh month. Assuming that the production increases uniformly by a fixed number every month, find production in,
 - (i) 11th month
 - (ii) 6 months
- 31. Draw a right triangle in which the sides (other than hypotenuse) are 8cm and 6cm. Then construct another triangle whose sides are in the ratio $\frac{2}{3}$ times the sides of the given triangle.
- 32. Determine the values of m and n such that the following system of linear equation have infinite number of solutions:

$$(2m-1)x + 3y - 5 \equiv 0$$

3x + (n-1)y - 2 = 0

33. If $a \cos\theta + b \sin\theta = m$ and $a \sin\theta - b \cos\theta = n$, prove that,

$$a^2 + b^2 = m^2 + n^2$$

OR

Prove that:

$$tan^{2}A - tan^{2}B = \frac{\cos^{2}B - \cos^{2}A}{\cos^{2}A\cos^{2}B}$$

34. Find the area of the shaded region.

Section D

35. In the given figure, PQR is a right angled triangle, right angled at Q. X and Y are the points on PQ and QR such that PX:XQ = 1:2 and QY:YR = 2:1. Prove that $9(PY^2 + XR^2) = 13PR^2$.

OR

Prove that,

"The ratio of the areas of two similar triangles is equal to the square of the ratio of the corresponding sides."

- 36. A bucket is open at the top is in the shape of frustum of a cone with capacity 12308.8 cu.cm. The radii of the top and bottom of circular ends of bucket are 20cm and 12cm respectively. Find the height of the bucket. (use $\pi = 3.14$)
- 37. Find the coordinates of the centre of the circle passing through the points (0, 0), (-2, 1) and (-3, 2).

OR

Show that the median of the triangle divides the triangle into two triangles of equal areas, whose varices are (4, -6), (3, -2) and (5, 2).

38. The following data gives the information about diabetic patients of a hospital during the month of December.

Ages	20 - 30	30-40	40 - 50	50-60	60 - 70	70 - 80	80 - 90	90 - 100
No. of People	4	12	14	16	20	16	10	8

Draw less than type ogive and hence find the median using the curve.

- 39. The angles of elevation and depression of the top and bottom of a light house from the top of a building, 60m high, are 30° and 60° respectively. Find
 - (i) The difference between the heights of the light house and the building.
 - (ii) Distance between the light house and the building.

OR

From a point on a bridge across a river, the angles of depression of the banks on opposite sides of the river are 30° and 45°, respectively. If the bridge is at a height of 3m from the banks, find the width of the river.

40. A shopkeeper buys a number of books for Rs. 80. If he had bought 4 more books for the same amount, each book would have cost Rs. 1 less. How many books did he buy and what is the cost of each book?
