PRE BOARD EXAMINATION, JANUARY 2020
 Mathematics

General Instructions:

1. All the questions are compulsory:
2. This question paper comprises 4 printed pages.
3. The question paper contains 40 questions divided into four sections $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D .

Section-A comprises 20 questions of 1 mark each; Section-B; 6 questions of 2 marks each; Section-G, 8 questions of 3 marks each and Section-D, 6 questions of 4 marks each.
4. There is no overall choice. However, an internal choice has been provided in two questions of 1 mark each, two questions of 2 marks each, three questions of 3 marks each, and three questions of 4 marks each. You have to attempt only one of the alternatives in all such questions.
5. Use of calculator is not permitted.

Section A

Choose the most appropriate answers for the following questions.

$\mathbf{1 0} \times \mathbf{1}=\mathbf{1 0}$

1. Which of the following relation is correct?
a) 2 mean $=3$ median + mode
b) 3 mode $=2$ mean + median
c) 3 median $=$ mean +2 mode
d) mode $=3$ median -2 mean
2. If the equation $x^{\overline{2}}-a x+1=0$, has two distinct roots, then
a) $a<2$
b) $a>2$
c) $a>\mp 2$
d) $a<\mp 2$
3. The distance between the points $(0,0)$ and (a, b) is
a) $\sqrt{a+b}$
b) $\sqrt{a-b}$
c) $\sqrt{a^{2}-b^{2}}$
d) $\sqrt{a^{2}+b^{2}}$
4. Two tangents TP and TQ drawn from an extemal point T to a circle of centre O . If $\angle P T Q=56^{\circ}$ and $\angle P O Q=6 x-2$, then value of x is,
a) 21
b) 11
c) 19
d) 29
5. The graph of $x-5=0$
a) Parallel to y - axis
b) Parallel to x-axis
c) Passes through origin
d) both (a) and (c)
6. Which of the following is true for $\frac{27}{18}$?
a) Terminating decimal expansion
b) Non terminating repeating decimal expansion
c) Non terminating non repeating decimal expansion
d) None of the above
7. If α and β are the zeros of the polynomial $x^{2}-4 x+2=0$, then the value of $(\alpha+1)(\beta+1)$ is
a) 0
b) 3
c) 6
d) 7
8. When sum of probabilities of two events are equal to 1 , then the events are called
(a) Equal trials
b) Unique events
c) Equally likely
d) Complementary
9. İn a right angle triangle $\mathrm{A} \overline{\mathrm{B}} \overline{\mathrm{C}}, \angle \bar{C}=\overline{9} 0^{\circ}$, then $\sec (\mathrm{A}+\overline{\mathrm{B}})=$
a) 0
b) 1
c) $\sqrt{2}$
d) Not defined
10. The ratio of length of a rod and its shadow is $1: \sqrt{3}$. Then the angle of elevation of the sun is
a) 30°
b) 60°
c) 45°
d) 90°
11. The pair of equations $y=0$ and $y=-7$ has \qquad solutions.

OR

Two lines given to be parallel. The equation of one of the lines is $4 x+3 y=14$, then the equation of ä second line is \qquad .
12. $n^{2}-1$ is divisible by 8 , if n is an \qquad integer.
13. Iñ äñy twoo triangles if the cörresponding sides äre equaul then the tríanglès are \qquad .
14. If $x+1,3 x-2$ and $4 x+2$ are in arithmetic progression, then the value of x is \qquad .
15. If two consecutive days of a week are chosen, then probability of getting Friday will be \qquad .

Answer the following.

$$
5 \times 1=5
$$

16. The radius of a circle and the side of a squäre are equal. What ratio of area of circle is area of square?
17. If the midpoint of a line segment joining the points $A(x, y+1)$ and $A(x+1, y-3)$ is $C(5,-2)$, then find x.
18. Name the angle formed by the line of sight with the horizontal when object is viewed as below the horizontal level.
19. The quadrilateral ABCD circumscribes the circle as given in the adjacent figure. Find the perimeter of the quadrilateral ABCD .
20. Find the $\operatorname{HCF}(3000,525)$ by division method.

OR
Define Euclid's division lemma.

Sectioñ B

21. A die is thrown twice. Find the probability, which verifies the equation $3 x+2 y=13$, where x and y are the outcomes of the first and the second throws respectively.
22. If $\alpha+\beta=3$ and $\alpha-\beta=1$, then find the quadratic equation whose zeros are α and β.

OR

Find the nature of the roots of quadratic polynomial $p(x)=3 x^{2}-3 \sqrt{3} x+2$.
23. In $\triangle A B C, A B=3 \mathrm{~cm}, \mathrm{BC}=2 \mathrm{~cm}$ and $\mathrm{CA}=2.5 \mathrm{~cm}$. If $\triangle A B C \sim \triangle \mathrm{DEF}$ and $\mathrm{EF}=4 \mathrm{~cm}$, then, find perimeter of $\triangle \mathrm{DEF}$.
 the height of the cylinder.
25. If $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are the interior angles of a $\triangle A B C$, show that:

$$
\begin{gathered}
\operatorname{cosec}\left(\frac{B+C}{2}\right)=\sec \left(\frac{A}{2}\right) \\
\text { OR }
\end{gathered}
$$

If $\tan (A+B)=\sqrt{3}$ and $\tan (A-B)=\frac{1}{\sqrt{3}}$, then find the value of A and B where A and B are acute angles.
26. Find the mean of the following distribution.

Classes	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
Frequency	8	7	12	13	10

Séçtiōin C
27. In a school, the duration of a period of junior section is 30 minutes and in senior section is 40 minutes. If the first bell for each section rings at 8:30am, when will the two bells ring together again?

OR

Show that $5+2 \sqrt{3}$ is irrational.
28. Find all the zeros of the polynomial $f(x)=2 x^{4}-2 x^{3}-7 x^{2}+3 x+6$, if two of its zeros are $\sqrt{\frac{3}{2}}$ and $-\sqrt{\frac{3}{2}}$
29. A circle is inscribed in a triangle $A B C$, having sides $A B=8 \mathrm{~cm}$, $B C=12 \mathrm{~cm}$ and $A C=10 \mathrm{~cm}$. Find the length of $A D, B E$ and $C F$.

OR

Two tangents AP and BP are drawn to a circle of centre O from an external point T. Prove that $\angle A P B=2 \angle O A B$.

 Assuming that the production increases uniformly by a fixed number every month, find production in,
(i) $11^{\text {th }}$ mō̄nth
(ii) 6 months
31. Draw a right triangle in which the sides (other than hypotenuse) are 8 cm and 6 cm . Then construct another triangle whose sides are in the ratio $\frac{2}{3}$ times the sides of the given triangle.
32. Determine the values of m and n such that the following system of linear equation have infinite number of solutions:

$$
\begin{gathered}
(2 m-1) x+3 y-5 \equiv 0 \\
3 x+(n-1) y-2=0
\end{gathered}
$$

33. If $a \cos \theta+b \sin \theta=m$ and $a \sin \theta-b \cos \theta=n$, prove that,

$$
a^{2}+b^{2}=m^{2}+n^{2}
$$

OR

Prove that:

$$
\tan ^{2} A-\tan ^{2} B=\frac{\cos ^{2} B-\cos ^{2} A}{\cos ^{2} A \cos ^{2} B}
$$

34. Find the area of the shaded region.

Page 3 of 4

Section D

35. In the given figure, $P Q R$ is a right angled triangle, right angled at $Q . X$ and Y are the points on PQ and QR such that $\mathrm{PX}: \mathrm{XQ}=1: 2$ and $\mathrm{QY}: \mathrm{YR}=2: 1$. Prove that $9\left(P Y^{2}+X R^{2}\right)=13 P R^{2}$.

Prove that,

 of the corresponding sides."
 of the top and bottom of circular ends of bucket are 20 cm and 12 cm respectively. Find the height of the bucket. (use $\pi=3.14$)
37. Find the coordinates of the centre of the circle passing through the points $(0,0),(-2,1)$ and $(-3,2)$.

OR

Show that the median of the triangle divides the triangle into two triangles of equal areas, whose varices äre $(4,-6),(3,-2)$ and $(5,2)$.
38. The following data gives the information about diabetic patients of a hospital during the month of December.

Ages	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$	$80-90$	$90-100$
No. of People	4	12	14	16	20	16	10	8

39. The angles of elevation and depression of the top and bottom of a light house from the top of a building, 60 m hìgh, âre 30° and 60° respectively. Fiñd
(i) The difference between the heights of the light house and the building.
(ii) Distance between the light house and the building.

OR

From a point on a bridge across a river, the angles of depression of the bañks on opposite sides of the river are 30° and 45°, respectively. If the bridge is at a height of 3 m from the banks, find the width of thè rivèrer.
40. A shopkeeper buys a number of books for Rs. 80. If he had bought 4 more books for the same amount, each book would have cost Rs. 1 less. How many books did he buy and what is the cost of each book?

