Pre- Board Examination1-2019-2020
 Mathematics - Standard (041)

Class: X
Date:
Time: 3hrs

General Instructions:

- All the questions are compulsory.
- The question paper consists of 40 questions divided into 4 sections A, B, C, and D.
- Section A comprises of 20 questions of 1 mark each. Section B comprises of 6 questions of 2 marks each. Section C comprises of 8 questions of 3 marks each. Section D comprises of 6 questions of 4 marks each.
- There is no overall choice. However, internal choices have been provided in two questions of 1 mark each, two questions of 2 marks each, three questions of 3 marks each, and three questions of 4 marks each. You have to attempt only one of the alternatives in all such questions.
- Use of calculators is not permitted.

Section: A

Answer the following:

1. α, β are zeroes of the polynomial $x^{2}-(k+6) x+2(2 k-1)$. Find the value of k if $\alpha+\beta=\frac{1}{2} \alpha \beta$.

OR
If two zeroes of the polynomial $x^{3}-4 x^{2}-3 x+12$ are $\sqrt{3}$ and $-\sqrt{3}$, then find its third zero.
2. For what value of p are $2 p+1,13,5 p-3$ three consecutive terms 1 of an A.P.?
3. Find the centroid of the triangle whose vertices are (3,-7), (-8,6) 1
$\&(5,10)$.
4. If $\tan 2 \mathrm{~A}=\cot \left(\mathrm{A}-18^{\circ}\right)$, where 2 A is an acute angle, find the value of A .
5. If $x \cdot \tan 45^{\circ} \cdot \cos 60^{\circ}=\sin 60^{\circ} \cdot \cot 60^{\circ}$, then find the value of x.

1

Fill in the blanks appropriately:
6. The decimal expansion of $\frac{6}{1250}$ will terminate after -------decimal places.
7. The number of common solutions for the system of linear equations $5 x+4 y+6=0 \& 10 x+8 y=12$ is
8. Given $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$ and their areas are

1 $64 \mathrm{~cm}^{2} \& 121 \mathrm{~cm}^{2}$ respectively. If $\mathrm{EF}=15.4 \mathrm{~cm}$, then $\mathrm{BC}=$ \qquad
9. If the points $(a, 0),(0, b) \&(1,1)$ are collinear, then $\frac{1}{a}+\frac{1}{b}=$ \qquad1
10. Number of tangents to a circle which are parallel to a secant is

OR

A tangent to a circle intersects it in \qquad

State True or False with reason:

11. $n^{2}-1$ is divisible by 8 , if n is an even integer.

1
12. $\left(x^{2}+1\right)^{2}-x^{2}=0$ has four real roots. 1
13. The value of the expression $\sqrt{x^{2}+y^{2}}$ is the distance of the point 1 $P(x, y)$ from the origin.
14. $\operatorname{Cos}^{4} A-\operatorname{Sin}^{4} A=\operatorname{Sin}^{2} A-\operatorname{Cos}^{2} A$
15. The sum of the probabilities of all the elementary events of an
experiment is 1 .

Choose the correct option:
16. The least number which is a perfect square and is divisible by 1 each of $16,20 \& 24$ is
(i) 240
(ii) 2400
(iii) 1600
(iv) 3600
17. The number of two-digit numbers which are divisible by 3 is
(i) 33
(ii) 30
(iii) 31
(iv) 29
18. The length of the side of a square whose diagonal is 16 cm , is
(i) $2 \sqrt{8}$
(ii) $8 \sqrt{2}$
(iii) $4 \sqrt{2}$
(iv) $2 \sqrt{2}$
19. If the perimeter of one face of a cube is 20 cm , then its surface areais
(i) $120 \mathrm{sq} . \mathrm{cm}$
(ii) $150 \mathrm{sq} . \mathrm{cm}$
(iii) 125 sq.cm
(iv) $400 \mathrm{sq} . \mathrm{cm}$
20. If the difference of mode and median of a data is 24 , then the difference of median and mean is
(i) 12
(ii) 24
(iii) 18
(iv) 36

Section: B

21. Divide 56 into four parts such that they form an A.P. In that
A.P the ratio of the product of the extremes to the product of means is 5:6
22. In the adjoining figure of $\triangle \mathrm{ABC}, \mathrm{D}$ divides $A C$ in the ratio 4:3. If $E D \| B C$, Then find $\operatorname{ar}(q u a d . B C D E): \operatorname{ar}(\triangle \mathrm{ABC})$

> OR

Prove that the area of the equilateral triangle described on the side of a square is half of area of the equilateral triangle described on its diagonal.
23. The angle of elevation of the top of a hill from the foot of a tower 2 is 60° and the angle of depression from the top of the tower to the foot of the hill is 30°. If the tower is 50 m high, find the height of the hill.
24. In the given figure, ABC is a triangle in which $\angle B=90^{\circ}, B C=48 \mathrm{~cm}$ \& $A B=14 \mathrm{~cm}$. A circle is inscribed in the triangle, whose centre is O. Find radius r in the circle.

25. A spherical bowl of internal radius 9 cm is full of liquid. The liquid is to be filled into cylindrical shaped bottles each of radius 1.5 cm and height 4 cm . How many bottles are needed to empty the bowl?
26. The probability of selecting a red ball at random from a jar that 2 contains only red, blue and orange balls is $\frac{1}{4}$. The probability of selecting a blue ball at random from the same jar is $\frac{1}{3}$. If the jar contains 10 orange balls, find the total number of balls in the
jar.
OR
At a fete, cards bearing numbers 1 to 1000, one number is on one card, are put in a box. Each player selects one card at random and that card is not replaced. If the selected card has a perfect square number greater than 500 , the player wins a prize. What is the probability that
(i) The first player wins a prize?
(ii) The second player wins a prize, if the first has won?

Section: C

27. In a seminar the number of participants from the departmentsof Mathematics, Physics and Biology are 336,240 $\& 96$ respectively. Find the minimum number of rooms required if in each room same number of participants are to be seated and all in a room belong to the same department.

OR
Find the smallest number which when divided by $35,56 \& 91$ leaves remainder 3 in each case.
28. If the polynomial $x^{4}-6 x^{3}+16 x^{2}-25 x+10$ is divided by $x^{2}-$ $2 x+k$ the remainder comes out to be $x+a$, find $k \& a$.
29. Solve the following pair of equations graphically
31. The coordinates of midpoints $\mathrm{D}, \mathrm{E} \& \mathrm{~F}$ of the sides AB, BC \& AC of a $\triangle \mathrm{ABC}$ are $(3,4),(8,9) \&(6,7)$ respectively. Find the coordinates of the vertices of the $\triangle \mathrm{ABC}$.
32. Find the value of x if

$$
4\left(\frac{\sec ^{2} 59^{\circ}-\cot ^{2} 31^{\circ}}{3}\right)-\frac{2}{3} \sin 90^{\circ}+3 \tan ^{2} 56^{\circ} \times \tan ^{2} 34^{\circ}=\frac{x}{3}
$$

OR
If $\sec \theta=x+\frac{1}{4 x}$, Prove that $\sec \theta+\tan \theta=2 x$ or $\frac{1}{2 x}$
33. In the given figure, the side of square 28 cm and radius of each circle is half of the length of the side of the square where $0 \& 0^{1}$ are centres of the circles. Find the area of shaded region.

34. The mean of the following frequency distribution is 62.8 and the sum of all the frequencies is 50 . Compute the missing frequencies $x \& y$.

Class	$0-$ 20	$20-40$	$40-60$	$60-80$	$80-100$	$100-120$
frequency	5	x	10	y	7	8

Section: D

35. Find three consecutive positive integers whose product is equal

4 to sixteen times their sum.

OR
Solve for $x: \frac{x+1}{x-1}+\frac{x-2}{x+2}=4-\frac{2 x+3}{x-2} ; x \neq 1,-2,2$
36. Prove that in a right-angle triangle the square on the hypotenuse is equal to the sum of the squares on the other two sides. Point D is the midpoint of the side BC of a right triangle

ABC , right angled at C.Prove that, $4 A D^{2}=4 A C^{2}+B C^{2}$
37. The angle of elevation of a cloud from a point 60 m above the 4 surface of the water of a lake is 30° and the angle of depression of its shadow in water of lake is 60°. Find the height of the cloud from the surface of water.
38. Water is flowing at the rate of $15 \mathrm{~km} / \mathrm{hr}$ through a pipe of diameter 14 cm into a cuboidal pond which is 50 m long and 44 m wide. In what time will the level of water in the pond rise by 21 cm ?

OR
Derive the formula for the volume of the frustum of a cone.
39. Draw an isosceles triangle $A B C$ in which $A B=A C=6 \mathrm{~cm}$ and 4 $B C=5 \mathrm{~cm}$. Construct a triangle $P Q R$ similar to $\triangle A B C$ in which $\mathrm{PQ}=8 \mathrm{~cm}$. Also justify the construction.

OR
Draw two concentric circles of radii 2 cm and 5 cm . Take a point P on the outer circle and construct a pair of tangents PA \& PB to the smaller circle. Measure PA.
40. Draw 'less than ogive' \& 'more than ogive' for the following 4 distribution and hence find its median.

Class	$50-60$	$60-70$	$70-80$	$80-90$	$90-100$
frequency	3	5	9	12	6

