SET-2

General Instructions:

(i) All the questions are compulsory.
(ii) The question paper consists of 36 questions divided into 4 sections A, B, C, and D.
(iii) Section A comprises of 20 questions of 1 mark each. Section B comprises of 6 questions of 2 marks each. Section C comprises of 6 question of 4 marks each. Section D comprises of 4 questions of 6 marks each.
(iv) There is no overall choice. However, an internal choice has been provided in three questions of 1 mark each, two questions of 2 marks each, two questions of 4 marks each, and two questions of 6 marks each. You have to attempt only one of the alternative in all such questions.
(v) Use of calculators is not permitted

Section - A

Q1-Q10 are multiple choice type questions. Select the correct option.

1. The value of the determinant $\left|\begin{array}{ccc}1+a & 1 & 1 \\ 1 & 1+a & 1 \\ 1 & 1 & 1+a\end{array}\right|$ is zero, then value of a is
(A) -3
(B) 0
(C) 1
(D) 3
2. If $\left[\begin{array}{l}x+y \\ x-y\end{array}\right]=\left[\begin{array}{ll}2 & 1 \\ 4 & 3\end{array}\right] \times\left[\begin{array}{c}1 \\ -2\end{array}\right]$, then the value of (x, y) is which of the following ?
(A) $(1,1)$
(B) $(1,-1)$
(C) $(-1,1)$
(D) $(-1,-1)$
3. The unit vector in the direction of $\hat{i}+\hat{j}+\hat{k}$ is :
(A) $\frac{1}{\sqrt{3}}(\hat{i}+\hat{j}+\hat{k})$
(B) $\sqrt{3}(\hat{i}+\hat{j}+\hat{k})$
(C) $\frac{1}{\sqrt{2}}(\hat{i}+\hat{j}+\hat{k})$
(D) $\sqrt{2}(\hat{i}+\hat{\mathrm{j}}+\hat{\mathrm{k}})$
4. If a die is thrown and a card is selected at random from a deck of 52 playing cards, then the probability of getting an even number on the die and a spade card is :
(A) $\frac{1}{2}$
(B) $\frac{1}{4}$
(C) $\frac{1}{8}$
(D) $\frac{3}{4}$
5. LPP theory states that the optimal solution to any problem will be at
(A)the origin
(B) a corner point of feasible region
(C) the highest point of the feasible region
(D) the lowest point of the feasible region
6. If $\tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{2}{11}=\tan ^{-1}$ a, then the value of a is \qquad .
(A) $\frac{1}{4}$
(B) $\frac{1}{2}$
(C) $\frac{3}{4}$
(D) 1
7. Two events E and F are independent. If $P(E)=0.3$ and $P(E \cup F)=0.5$, then $P(E / F)-P(F / E)$ equal to :
(A) $2 / 7$
(B) $3 / 35$
(C) $1 / 70$
(D) $1 / 7$
8. $\int \frac{x^{3}}{x+1} d x$ is equal to :
(A) $x+\frac{x^{2}}{2}+\frac{x^{3}}{3}-\log |1-x|+C$
(B) $x+\frac{x^{2}}{2}-\frac{x^{3}}{3}-\log |1-x|+C$
(C) $x-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\log |1+x|+C$
(D) $x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\log |1+x|+C$
9. The distance between the parallel planes $2 x-2 y-z+3=0$ and $4 x-4 y-2 z+5=0$ is :
(A) 1
(B) $\frac{5}{6}$
(C) $\frac{1}{6}$
(D) $\frac{1}{2}$
10. The perpendicular distance of the plane $3 x-6 y+5 z=12$ from origin is :
(A) $\frac{-\sqrt{70}}{12}$
(B) $\frac{-12}{\sqrt{70}}$
(C) $\frac{12}{\sqrt{70}}$
(D) $\frac{\sqrt{70}}{12}$

(Q11-Q15) Fill in the blanks.

11. If $f: R \rightarrow R$ is given by $f(x)=\left(3-x^{3}\right)^{1 / 3}$. Then $\operatorname{fof}(x)$ is \qquad
12. If $f(x)=\left\{\begin{array}{cc}\frac{1-\cos 4 \mathrm{x}}{8 \mathrm{x}^{2}}, & \mathrm{x} \neq 0 \\ \mathrm{k} & , \quad \mathrm{x}=0\end{array}\right.$, is continuous at $\mathrm{x}=0$, then the value of k is.
13. If A and B are symmetric matrices, then $B A-2 A B$ is a \qquad matrix.
14. For all real values of x, the function $f(x)=e^{x}-e^{-x}$ is \qquad

OR

A particle is moving in a straight line. Its displacement is given by $s=4 t-2 t^{2}$, where t is in seconds. Then the particle will come to rest after \qquad second.
15. If $\vec{a}, \vec{b}, \vec{c}$ are coplanar then $[\vec{a} \vec{b} \vec{c}]$ will be \qquad

OR

The vectors $2 \hat{i}-3 \hat{j}+5 \hat{k}$ and $-\lambda \hat{i}+2 \hat{j}+2 \hat{k}$ are mutually perpendicular if $\lambda=$ \qquad

(Q16-Q20) Answer the following questions.

16. For what values of k, the system of linear equations
$x+y+z=2$
$2 x+y-z=3$
$3 \mathrm{x}+2 \mathrm{y}+\mathrm{kz}=4$
has a unique solution?
17. Evaluate : $\int_{2}^{4} \frac{x}{x^{2}+1} d x$
18. Evaluate $\int \frac{(1+\cos x)}{x+\sin x} d x$

OR
Evaluate $\int \frac{d x}{\sqrt{16-9 \mathrm{x}^{2}}}$
19. Evaluate $\int \frac{\left(x^{2}+2\right)}{x+1} d x$
20. Find the order and degree of the differential equation $\frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{1 / 4}+x^{1 / 5}=0$.

Section - B

21. Solve for $\mathrm{x}: \tan ^{-1}(\mathrm{x}-1)+\tan ^{-1} \mathrm{x}+\tan ^{-1}(\mathrm{x}+1)=\tan ^{-1} 3 \mathrm{x}$.

OR

If $A=\{1,2,3, \ldots \ldots ., 9\}$ and R be the relation in $A \times A$ defined by $(a, b) R(c, d)$ if $\mathrm{a}+\mathrm{d}=\mathrm{b}+\mathrm{c}$ for $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \in \mathrm{A}$ is an equivalence relation, then find the equivalence class $[(2,5)]$.
22. Differentiate $\tan ^{-1}\left[\frac{\sqrt{1+\mathrm{x}^{2}}-1}{\mathrm{x}}\right]$ with respect to x
23. The length x, of a rectangle is decreasing at the rate of $5 \mathrm{~cm} /$ minute and the width y, is increasing at the rate of $4 \mathrm{~cm} /$ minute. When $x=8 \mathrm{~cm}$ and $y=6 \mathrm{~cm}$, find the rate of change of the area of the rectangle.
24. Show that the four points A, B, C and D with position vectors $4 \hat{i}+5 \hat{j}+\hat{k},-(\hat{j}+\hat{k}), 3 \hat{i}+9 \hat{j}+4 \hat{k}$ and $4(\hat{i}+\hat{j}+\hat{k})$, respectively are coplanar.

OR

If $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=4 \hat{i}-2 \hat{j}+3 \hat{k}$ and $\vec{c}=\hat{i}-2 \hat{j}+\hat{k}$, find a vector of magnitude 6 units which is parallel to the vector $2 \overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{b}}+3 \overrightarrow{\mathrm{c}}$.
25. Find the points on the line $\frac{x+2}{3}=\frac{y+1}{2}=\frac{z-3}{2}$ at a distance of 5 units from the point $P(1,3,3)$.
26. A black and a red die are rolled together. Find the conditional probability of obtaining the sum 8 , given that the red die resulted in a number less than 4.

Section - C

27. Consider $f: R_{+} \rightarrow[4, \infty)$ given by $f(x)=x^{2}+4$. Show that f is invertible with inverse f^{-1} of f given by $f^{-1}(y)=\sqrt{y-4}$, where R_{+}is the set of all non-negative real numbers.
28. If $x=\operatorname{acos}^{3} \theta$ and $y=\operatorname{ain}^{3} \theta$, then find the value of $\frac{d^{2} y}{d x^{2}}$ at $\theta=\frac{\pi}{6}$.

OR

If $(a x+b) e^{y / x}=x$, then show that $x^{3}\left(\frac{d^{2} y}{d x^{2}}\right)=\left(x \frac{d y}{d x}-y\right)^{2}$
29. Solve the following differential equation : $x^{2} \frac{d y}{d x}=y^{2}+2 x y$. Given that $y=1$, when $x=1$.
30. Evaluate : $\int_{-2}^{2} \frac{x^{2}}{1+5^{x}} d x$
31. Two cards are drawn simultaneously (without replacement) from a well-shuffled pack of 52 cards: Find the mean and variance of the number of red cards

OR

There are three coins. One is a two-headed coin (having head on both faces), another is a biased coin that comes up heads 75% of the times and third is also a biased coin that comes up tails 40% of the times. One of the three coins is chosen at random and tossed, and it shows heads. What is the probability that it was the two-headed coin?
32. A diet for a sick person must contain at least 4000 units of vitamins, 50 units of minerals and 1400 units of calories. Two foods A and B are available at a cost of Rs. 5 and Rs. 4 per unit respectively. One unit of the food A contains 200 units of vitamins, 1 unit of minerals and 40 units of calories, while one unit of the food B contains 100 units of vitamins, 2 units of minerals and 40 units of calories. Find what combination of the foods A and B should be used to have least cost, but it must satisfy the requirements of the sick person. Form the equation as LPP and solve it graphically.

Section - D

33. If $\mathrm{A}=\left[\begin{array}{ccc}2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2\end{array}\right]$, find A^{-1}. Use it to solve the system of equations
$2 x-3 y+5 z=11$
$3 x+2 y-4 z=-5$
$x+y-2 z=-3$

OR

Using elementary row transformations, find the inverse of the matrix $\mathrm{A}=\left[\begin{array}{ccc}1 & 2 & 3 \\ 2 & 5 & 7 \\ -2 & -4 & -5\end{array}\right]$
34. Using the method of integration, find the area of the triangular region whose vertices are $(2,-2)$, $(4,3)$ and $(1,2)$.
35. Show that the altitude of the right circular cone of maximum volume that can be inscribed in a sphere of radius r is $\frac{4 \mathrm{r}}{3}$. Also show that the maximum volume of the cone is $\frac{8}{27}$ of the volume of the sphere.

OR

Show that the height of the cylinder of maximum volume that can be inscribed in a sphere of radius R
is $\frac{2 R}{\sqrt{3}}$. Also find the maximum volume.
36. Find the coordinates of the point where the line through the points $(3,-4,-5)$ and $(2,-3,1)$, crosses the plane determined by the points $(1,2,3),(4,2,-3)$ and $(0,4,3)$.

