CLASS - X (CBSE SAMPLE PAPER)

MATHEMATICS

MATHEMATICS ANSWER AND SOLUTIONS SECTION-A 1. Option (1) $0 \le r < 3$ 2. Option (4) More than 3 3. Option (3) 17. $\cos\theta \frac{\sqrt{b^2-a^2}}{b}$ 4. Option (2) $a_n = 3.5$ Option (4) 5. 4:16. Option (3) Trigonometric ratios of the angles. 7. Option (3) 19. 140° 8. Option (3) 10 9. Option (2)

- 2.1
- 10. Option (2)
 - 5 2
- 360 cm² 11.
- 12. Median
- 2 and -213.
- 4
- 14. 15.
 - 0
 - OR
 - -1

For equal roots : 16. $D = 0 \Longrightarrow b^2 - 4ac = 0$

$$(-3k)^2 - 4 \times 9 \times k = 0$$
$$\Rightarrow 9k^2 - 36 \ k = 0$$

 \Rightarrow 9k (k - 4) = 0 \Rightarrow k = 0 or k = 4

SAMPLE PAPER

OR

For roots to be real and equal $b^2 - 4ac = 0$ $\Rightarrow (5k)^2 - 4 \times 1 \times 16 = 0$ $\Rightarrow 25k^2 - 64 = 0$ $\Rightarrow k = \pm \frac{8}{5}$ Length of diagonal = AB $=\sqrt{(5-0)^2+(0-3)^2}=\sqrt{25+9}=\sqrt{34}$ **18.** ΔABC ~ ΔQRP $\Rightarrow \frac{\text{Area of } \Delta \text{ABC}}{\text{Area of } \Delta \text{QRP}} = \frac{\text{BC}^2}{\text{RP}^2} \Rightarrow \frac{9}{4} = \frac{(15)^2}{\text{RP}^2}$ $\therefore \frac{3}{2} = \frac{15}{\text{RP}}$ \Rightarrow RP = 10 cm $\sin^2 A = 2 \sin A$. $\Rightarrow \sin^2 A - 2 \sin A = 0 \Rightarrow \sin A (\sin A - 2) = 0$ \Rightarrow either sin A = 0 or sin A - 2 = 0. $\Rightarrow A = 0^{\circ}$ $[\sin A = 2, \text{Not Possible}]$ \therefore Value of $\angle A = 0^{\circ}$ 20. Let first term is a $a_7 = 4$ a + 6d = 4a + 6(-4) = 4a = 4 + 24a = 28 Thus, first term is 28. SECTION-B $\frac{1}{\sqrt{3}}\right)^2 + (\sqrt{3})^2 + 2 - 1$ 21. $=\frac{1+3+1}{1}$ = 5

Your Hard Work Leads to Strong Foundation

1

22.	 Here, the total number of possible outcomes = 5. (i) Since, there is only one queen ∴ Favourable number of elementary events = 1 ∴ Probability of getting the card of queen = ¹/₅. 		OR $7a_7 = 11a_{11}$ $\Rightarrow 7(a + 6d) = 11(a + 10d)$ $\Rightarrow a + 17d = 0$ $\Rightarrow a_{18} = 0$
	(ii) Now, the total number of possible outcomes = 4.	25.	$x = \frac{6-6}{5} = 0$ $y = \frac{-10+15}{5} = 1$
	 Since, there is only one ace ∴ Favourable number of elementary events = 1 ∴ Probability of getting an ace card = ¹/₄. 	26.	 Hence, coordinates of point P(0, 1) Total number of cards = 49 Total number of outcomes = 49 (i) A multiple of 5 Favourable outcomes : 5, 10, 15, 20, 25, 30, 35, 40, 45
23.	HCF × LCM = Product of two numbers $9 \times 360 = 45 \times 2nd$ number 2nd number = 72 OR		Number of favourable outcomes = 9 Probability (E) = $\frac{\text{No. of favourable outcomes}}{\text{Total number of outcomes}}$ = $\frac{9}{49}$
	Let us assume, to the contrary that $7 - \sqrt{5}$ is rational $7 - \sqrt{5} = \frac{p}{q}$, where p & q are co-prime and $q \neq 0$ $\Rightarrow \sqrt{5} = \frac{7q - p}{q}$		(ii) A perfect square Favourable outcomes : 1, 4, 9, 16, 25, 36, 49 Number of favourable outcomes = 7 Probability (E) = $\frac{\text{No. of favourable outcomes}}{\text{Total number of outcomes}}$ = $\frac{7}{49} = \frac{1}{7}$
	q $\frac{7q-p}{q}$ is rational = $\sqrt{5}$ is rational which is a contradiction Hence $7-\sqrt{5}$ is irrational	27.	$-\frac{1}{49} - \frac{1}{7}$ SECTION-C $LHS = \sin\theta(1 + \tan\theta) + \cos\theta(1 + \cot\theta)$ $= \sin\theta + \sin\theta \cdot \frac{\sin\theta}{\cos\theta} + \cos\theta + \cos\theta \frac{\cos\theta}{\sin\theta}$
24.	Hence $7 - \sqrt{5}$ is irrational 20^{th} term from the end = $\ell - (n - 1)d$ = $253 - 19 \times 5$ = 158 2 <i>Your Hard Work Leads</i>	th S	$= (\sin\theta + \cos\theta) + \frac{\sin^2\theta}{\cos\theta} + \frac{\cos^2\theta}{\sin\theta}$ $= (\sin\theta + \cos\theta) + \frac{\sin^2\theta + \cos^3\theta}{\sin\theta\cos\theta}$

EXAMPLE 7
CLASS - X (CBSE SAMPLE PAPER)
MATHEMATICS
E (
$$\sin\theta + \cos\theta$$
) $\left[1 + \frac{\sin^2 \theta + \cos^2 \theta - \sin\theta \cos \theta}{\sin\theta \cos \theta}\right]$
 $= (\sin\theta + \cos\theta) \left[1 + \frac{\sin^2 \theta + \cos^2 \theta - \sin\theta \cos \theta}{\sin\theta \cos \theta}\right]$
 $= (\sin\theta + \cos\theta) \left[1 + \frac{1}{\sin\theta \cos \theta} - 1\right]$
 $= \sin\theta + \cos\theta \times \frac{1}{\sin\theta \cos \theta}$
 $= \frac{1}{\cos\theta} + \frac{1}{\sin\theta}$
 $= \sin\theta + \cos\theta \times \frac{1}{\sin\theta \cos \theta}$
 $= \frac{1}{\cos\theta} + \frac{1}{\sin\theta}$
 $= \sec\theta + \cos\theta\theta$
RHS
Hence proved
28. Volume of cylindrical bucket = Volume of conical heap of sand.
 $\pi^2h = \frac{1}{3}\pi R^2 \times 24$
 $\pi \times 18 \times 18 \times 32$
 $= \frac{1}{3}\pi R^2 \times 24$
 $R^2 = \frac{18 \times 18 \times 32 \times 3}{24}$
 $R^2 = \frac{18 \times 18 \times 32 \times 3}{24}$
 $R^2 = \frac{18 \times 18 \times 32 \times 3}{24}$
 $R^2 = \frac{18 \times 18 \times 32 \times 3}{24}$
 $R^2 = \frac{18 \times 18 \times 32 \times 3}{24}$
 $R^3 = a^{O^2} + OB^3$
 $\ell^2 = 24^2 + 36^2$
 $\ell = \sqrt{576 + 1296}$
 $= \sqrt{1872}$
 $\ell = 43.27 \text{ cm} = 43.3 \text{ cm}$
Number of balls = $\frac{Volume of solid sphere}{Volume of lspherical ball}$
 $= \frac{\frac{4}{3} \times \pi \times 3 \times 3 \times 3}{\frac{4}{3} \times \pi \times (3 \times 3) \times (3 \times 3) \times (3 \times 3) \times (3 \times 4 + 6x^2 + 3) \times (3 \times 4 + 3) \times (3 \times 3 + 3 \times 4 + 3) \times (3 \times 4 + 3) \times$

пΓ

Let the numerator be x and denominator be y. 31.

$$\therefore$$
 Fraction = $\frac{x}{y}$

Now, according to question,

$$\frac{x-1}{y} = \frac{1}{3} \qquad \Rightarrow \quad 3x - 3 = y$$

 $\therefore 3x - y = 3$(i)

and $\frac{x}{y+8} = \frac{1}{4} \implies 4x = y+8$

$$\therefore 4x - y = 8$$
(ii)

Now, subtracting equation (ii) from (i), we have

3x - y = 3

$$4x - y = 8$$
$$- + -$$
$$- x = -5$$

x = 5

Putting the value of x in equation (i), we have $3 \times 5 - y = 3 \implies 15 - y = 3 \implies 15 - 3 = y$ ∴ y = 12

Hence, the required fraction is $\frac{5}{12}$

OR

Let the speed of car at A be x km/h

And the speed of car at B be y km/h

Case 1
$$8x - 8y = 80$$

x - y = 10

Case 2
$$\frac{4}{3}x + \frac{4}{3}y = 80$$

x + y = 60

On solving x = 35 and y = 25

Hence, speed of cars at A and B are 35 km/h and 25 km/h respectively

Diagonals of parallelogram bisect each other \Rightarrow midpoint of AC = midpoint of BD

$$\Rightarrow \left(\frac{1+k}{2}, \frac{-2+2}{2}\right) = \left(\frac{-4+2}{2}, \frac{-3+3}{2}\right)$$
$$\Rightarrow \frac{1+k}{2} = \frac{-2}{2}$$
$$\Rightarrow k = -3$$
200 - 250 is the modal class

$$Mode = \ell + \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times h$$

$$= 200 + \frac{12-5}{24-5-2} \times 50$$

$$= 200 + 20.59 = 220.59$$

34.

E

In $\triangle ABD$ and $\triangle CEF$ AB = AC(Given) $\Rightarrow \angle ABC = \angle ACB$

(Equal sides have equal oppposite angles) $\angle ABD = \angle ECF$

 $\angle ADB = \angle EFC$ [Each 90°] (AA - Similarity) So, $\triangle ABD \sim \triangle CEF$

... (1)

Your Hard Work Leads to Strong Foundation

 \Rightarrow PT = PS

CLASS - X (CBSE SAMPLE PAPER)

MATHEMATICS

 $\Delta NSQ \cong \Delta MTR$ $\Rightarrow \angle NQS = \angle MRT$ $\Rightarrow \angle PQR = \angle PRQ$ $\Rightarrow PR = PQ \qquad ... (2)$ From (1) and (2) $\frac{PT}{PR} = \frac{PS}{PQ}$ Also, $\angle TPS = \angle RPQ$ (common) $\Rightarrow \Delta PTS \sim \Delta PRQ$ (by SAS similarity criteria)

SECTION-D

35. Steps of Construction :

Step I : Draw any ray BX making an acute angle with BC on the side opposite to the vertex A.

Step II : From B cut off 5 arcs B_1, B_2, B_3, B_4 and B_5 on BX so that $BB_1 = B_1B_2 = B_2B_3 = B_3B_4 = B_4B_5$.

X

- **Step III :** Join B_3 to C and draw a line through B_5 parallel to B_3C , intersecting the extended line segment BC at C'.
- **Step IV :** Draw a line through C' parallel to CA intersecting the extended line segment BA at A' (see figure). Then A'BC' is the required triangle.

36.
$$S_n = \frac{n}{2} [2a + (n-1)d]$$

$$S_{30} = \frac{36}{2} [2a + 29d] \implies S_{30} = 30a + 435d \dots (i)$$

$$\Rightarrow \mathbf{S}_{20} = \frac{20}{2} \left[2\mathbf{a} + 19\mathbf{d} \right] \Rightarrow \mathbf{S}_{20} = 20\mathbf{a} + 190\mathbf{d}$$

$$S_{10} = \frac{10}{2} [2a + 9d] \Longrightarrow S_{10} = 10a + 45d$$

$$3(S_{20} - S_{10}) = 3[20a + 190d - 10a - 45d]$$

$$= 3[10a + 145d] = 30a + 435d = S_{30}$$

[From (i)]

Hence, $S_{30} = 3(S_{20} - S_{10})$ Hence proved. OR

Sum of first seven terms,

$$S_{n} = \frac{n}{2} [2a + (n - 1)d]$$

$$S_{7} = \frac{7}{2} [2a + (7 - 1)d] = \frac{7}{2} [2a + 6d]$$

$$\Rightarrow 63 = 7a + 21d$$

$$\Rightarrow a = \frac{63 - 21d}{7} \dots (1)$$

$$\Rightarrow S_{14} = \frac{14}{2} [2a + 13d]$$

$$\Rightarrow S_{14} = 7 [2a + 13d] = 14 \text{ a} + 91d$$
But ATQ,

$$S_{1-7} + S_{8-14} = S_{14}$$

$$63 + 161 = 14a + 91d$$

$$\Rightarrow 224 = 14a + 91d$$

$$2a + 13d = 32$$

$$2\left(\frac{63 - 21d}{7}\right) + 13d = 32 \text{ (from 1)}$$

$$\Rightarrow 126 - 42d + 91d = 224$$

Your Hard Work Leads to Strong Foundation

 \Rightarrow 49d = 98

d = 2

 $\Rightarrow a = \frac{63 - 21 \times 2}{7} = \frac{63 - 42}{7} = 3$

 \Rightarrow $a_{28} = a + 27d = 3 + 27 \times 2$

 \Rightarrow $a_{28} = 3 + 54 = 57$

37. In a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

Given : A \triangle ABC in which \angle B = 90°.

To prove : $AC^2 = AB^2 + BC^2$.

Construction : From B, Draw BD \perp AC.

Proof :

In $\triangle ADB$ and $\triangle ABC$, we have :

 $\angle BAD = \angle CAB = \angle A$ (Common)

 $\angle ADB = \angle ABC$ (Each = 90°)

 $\therefore \Delta ADB \sim \Delta ABC$ (By AA axiom of similarity)

 $\Rightarrow \frac{AD}{AB} = \frac{AB}{AC}$ (Corr. sides of similar Δs are

proportional)

 $\Rightarrow AB^2 = AD \times AC \qquad \dots (1)$

In \triangle CDB and \triangle CBA, we have :

 $\angle CDB = \angle CBA (Each = 90^{\circ})$

 $\angle BCD = \angle ACB = \angle C$ (Common)

: $\triangle CDB \sim \triangle CBA$ (By AA axiom of similarity)

 $\Rightarrow \frac{DC}{BC} = \frac{BC}{AC}$ (Corr. sides of similar Δs are proportional)

 $\Rightarrow BC^2 = DC \times AC \qquad \dots (2)$

Adding (1) and (2), we get

 $AB^{2} + BC^{2} = AD \times AC + DC \times AC$ $= (AD + DC) \times AC = AC^{2} (\because AD + DC = AC)$ Hence, $AB^{2} + BC^{2} = AC^{2}$.

38. Let OA be the tower of height h, and P be the initial position of the car when the angle of depression is 30°.

After 6 seconds, the car reaches to Q such that the angle of depression at Q is 60° . Let the speed of the car be v metre per second. Then,

PQ = 6v (:: Distance = speed × time)

and let the car take t seconds to reach the tower OA from Q (Figure). Then OQ = vt metres.

Now, in $\triangle AQO$ we have

$$\tan 60^\circ = \frac{OA}{QO}$$

$$\Rightarrow \sqrt{3} = \frac{h}{vt} \implies h = \sqrt{3} vt \qquad \dots (i)$$

Now, in $\triangle APO$, we have

$$\tan 30^\circ = \frac{OA}{PO}$$

$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{h}{6v + vt} \Rightarrow \sqrt{3}h = 6v + vt \quad \dots(ii)$$

Now, substituting the value of h from (i) and into (ii), we have

$$\sqrt{3} \times \sqrt{3}$$
 vt = 6v + vt

$$\Rightarrow 3vt = 6v + vt \Rightarrow 2vt = 6v \Rightarrow t = \frac{6v}{2v} = 3$$

Hence, the car will reach the tower from Q in 3 seconds.

Your Hard Work Leads to Strong Foundation

6

MATHEMATICS

OR

Let the speed of car be x m/ minutes In $\triangle ABC$

 $\frac{h}{y} = \tan 45^{\circ}$ $\implies h = y$

In **AABD**

$$\frac{h}{y+12x} = \tan 30^{\circ}$$
$$\Rightarrow h\sqrt{3} = y + 12x$$
$$\Rightarrow y\sqrt{3} - y = 12x$$
$$\Rightarrow y = \frac{12x}{\sqrt{3}-1} = \frac{12x(\sqrt{3}+1)}{2}$$

 $\Rightarrow y = 6x (\sqrt{3} + 1)$ Time taken from C to B = $6(\sqrt{3} + 1)$ minutes

39. Let $BC = r \ cm$, $DE = R \ cm$ and height of cone $h = 10 \ cm$

Also, $\triangle ABC \sim \triangle ADE$

i.e., BC =
$$\frac{1}{2}$$
DE = $\frac{1}{2}$ × R or r = $\frac{R}{2}$

Now,
$$\frac{\text{Volume of cone}}{\text{Volume of the frustum}}$$

$$=\frac{\frac{1}{3}\pi r^{2}h}{\frac{1}{3}\pi\frac{h}{2}\left[R^{2}+r^{2}+rR\right]}=\frac{R^{2}}{4\left[R^{2}+\frac{R^{2}}{4}+\frac{R^{2}}{2}\right]}$$

$$=\frac{1}{4.\frac{7}{4}}=\frac{1}{7}$$

 \therefore The required ratio = 1 : 7

				-
40.	Marks	Cumulative Frequency	Marks	Cumulative Frequency
	Less than 5	4	More than 0	100
	Less than 10	10	More than 5	96
	Less than 15	20	More than 10	90
	Less than 20	30	More than 15	80
	Less than 25	55	More than 20	70
	Less than 30	77	More than 25	45
	Less than 35	95	More than 30	23
	Less than 40	100	More than 35	5

Your Hard Work Leads to Strong Foundation

7

PRE-NURTURE & CAREER FOUNDATION DIVISION

MATHEMATICS

OR

Class Interval	Frequency	cf
0 - 100	2	2
100 - 200	5	7
200 - 300	Х	7 + x
300 - 400	12	19 + x
400 - 500	17	36 + x
500 - 600	20	56 + x
600 - 700	У	56 + x + y
700 - 800	9	65 + x + y
800 - 900	7	72 + x + y
900 - 1000	4	76 + x + y

$$\Rightarrow 500 + \left(\frac{50 - 36 - x}{20}\right) \times 100 = 525$$
$$\Rightarrow (14 - x) \times 5 = 25$$
$$\Rightarrow x = 9$$
$$\Rightarrow \text{ from (1), y = 15}$$

N = 100

$$\Rightarrow 76 + x + y = 100$$

$$\Rightarrow x + y = 24$$
 ...(i)

Median = 525

 $\Rightarrow 500 - 600$ is median class

Median =
$$\ell + \frac{\frac{n}{2} - cf}{f} \times h$$

Your Hard Work Leads to Strong Foundation