ANSWER AND SOLUTIONS

SECTION-A

1. Option (1)
$0 \leq r<3$
2. Option (4)

More than 3
3. Option (3)
$\cos \theta \frac{\sqrt{\mathrm{b}^{2}-\mathrm{a}^{2}}}{\mathrm{~b}}$
4. Option (2)
$\mathrm{a}_{\mathrm{n}}=3.5$
5. Option (4)

4: 1
6. Option (3)

Trigonometric ratios of the angles.
7. Option (3)
140°
8. Option (3)

10
9. Option (2)
2.1
10. Option (2)
$\frac{5}{2}$
11. $360 \mathrm{~cm}^{2}$
12. Median
13. 2 and -2
14. 4
15. 0

OR
-1
16. For equal roots :
$\mathrm{D}=0 \Rightarrow \mathrm{~b}^{2}-4 \mathrm{ac}=0$
$(-3 \mathrm{k})^{2}-4 \times 9 \times \mathrm{k}=0$
$\Rightarrow 9 \mathrm{k}^{2}-36 \mathrm{k}=0$
$\Rightarrow 9 \mathrm{k}(\mathrm{k}-4)=0 \Rightarrow \mathrm{k}=0$ or $\mathrm{k}=4$

OR

For roots to be real and equal $b^{2}-4 a c=0$
$\Rightarrow(5 \mathrm{k})^{2}-4 \times 1 \times 16=0$
$\Rightarrow 25 \mathrm{k}^{2}-64=0$
$\Rightarrow \mathrm{k}= \pm \frac{8}{5}$
17. Length of diagonal $=\mathrm{AB}$

$$
=\sqrt{(5-0)^{2}+(0-3)^{2}}=\sqrt{25+9}=\sqrt{34}
$$

18. $\Delta \mathrm{ABC} \sim \Delta \mathrm{QRP}$
$\Rightarrow \frac{\text { Area of } \triangle \mathrm{ABC}}{\text { Area of } \triangle \mathrm{QRP}}=\frac{\mathrm{BC}^{2}}{\mathrm{RP}^{2}} \Rightarrow \frac{9}{4}=\frac{(15)^{2}}{\mathrm{RP}^{2}}$
$\therefore \frac{3}{2}=\frac{15}{\mathrm{RP}}$
$\Rightarrow \mathrm{RP}=10 \mathrm{~cm}$
19. $\sin ^{2} A=2 \sin A$.
$\Rightarrow \sin ^{2} \mathrm{~A}-2 \sin \mathrm{~A}=0 \Rightarrow \sin \mathrm{~A}(\sin \mathrm{~A}-2)=0$
\Rightarrow either $\sin \mathrm{A}=0$ or $\sin \mathrm{A}-2=0$.
$\Rightarrow \mathrm{A}=0^{\circ}$
[$\sin \mathrm{A}=2$, Not Possible]
\therefore Value of $\angle \mathrm{A}=0^{\circ}$
20. Let first term is a
$a_{7}=4$
$a+6 d=4$
$a+6(-4)=4$
$\mathrm{a}=4+24$
$\mathrm{a}=28$
Thus, first term is 28 .

SECTION-B

21. $\frac{3 \times\left(\frac{1}{\sqrt{3}}\right)^{2}+(\sqrt{3})^{2}+2-1}{1}$
$=\frac{1+3+1}{1}$
$=5$
22. Here, the total number of possible outcomes $=5$.
(i) Since, there is only one queen
$\therefore \quad$ Favourable number of elementary events = 1
$\therefore \quad$ Probability of getting the card of queen $=\frac{1}{5}$.
(ii) Now, the total number of possible outcomes $=4$.

Since, there is only one ace
$\therefore \quad$ Favourable number of elementary events $=1$
$\therefore \quad$ Probability of getting an ace card $=\frac{1}{4}$.
23. $\mathrm{HCF} \times \mathrm{LCM}=$ Product of two numbers
$9 \times 360=45 \times 2$ nd number
2 nd number $=72$

OR

Let us assume, to the contrary that $7-\sqrt{5}$ is rational $7-\sqrt{5}=\frac{\mathrm{p}}{\mathrm{q}}$, where $\mathrm{p} \& \mathrm{q}$ are co-prime and

$$
q \neq 0
$$

$\Rightarrow \sqrt{5}=\frac{7 q-p}{q}$
$\frac{7 \mathrm{q}-\mathrm{p}}{\mathrm{q}}$ is rational $=\sqrt{5}$ is rational which is a contradiction

Hence $7-\sqrt{5}$ is irrational
24. $20^{\text {th }}$ term from the end $=\ell-(\mathrm{n}-1) \mathrm{d}$

$$
\begin{aligned}
& =253-19 \times 5 \\
& =158
\end{aligned}
$$

$7 \mathrm{a}_{7}=11 \mathrm{a}_{11}$
$\Rightarrow 7(\mathrm{a}+6 \mathrm{~d})=11(\mathrm{a}+10 \mathrm{~d})$
$\Rightarrow a+17 d=0$
$\Rightarrow \mathrm{a}_{18}=0$
25. $\mathrm{x}=\frac{6-6}{5}=0$
$y=\frac{-10+15}{5}=1$
Hence, coordinates of point $\mathrm{P}(0,1)$
26. Total number of cards $=49$

Total number of outcomes $=49$
(i) A multiple of 5

Favourable outcomes : 5, 10, 15, 20, 25, 30, 35, 40, 45

Number of favourable outcomes $=9$
Probability $(E)=\frac{\text { No. of favourable outcomes }}{\text { Total number of outcomes }}$

$$
=\frac{9}{49}
$$

(ii) A perfect square

Favourable outcomes : 1, 4, 9, 16, 25, 36, 49
Number of favourable outcomes $=7$
Probability $(E)=\frac{\text { No. of favourable outcomes }}{\text { Total number of outcomes }}$

$$
=\frac{7}{49}=\frac{1}{7}
$$

SECTION-C

27. LHS $=\sin \theta(1+\tan \theta)+\cos \theta(1+\cot \theta)$
$=\sin \theta+\sin \theta \cdot \frac{\sin \theta}{\cos \theta}+\cos \theta+\cos \theta \frac{\cos \theta}{\sin \theta}$
$=(\sin \theta+\cos \theta)+\frac{\sin ^{2} \theta}{\cos \theta}+\frac{\cos ^{2} \theta}{\sin \theta}$
$=(\sin \theta+\cos \theta)+\frac{\sin ^{2} \theta+\cos ^{3} \theta}{\sin \theta \cos \theta}$
$=(\sin \theta+\cos \theta)\left[1+\frac{\sin ^{2} \theta+\cos ^{2} \theta-\sin \theta \cos \theta}{\sin \theta \cos \theta}\right]$
$=(\sin \theta+\cos \theta)\left[1+\frac{1}{\sin \theta \cos \theta}-1\right]$
$=\sin \theta+\cos \theta \times \frac{1}{\sin \theta \cos \theta}$
$=\frac{1}{\cos \theta}+\frac{1}{\sin \theta}$
$=\sec \theta+\operatorname{cosec} \theta$
= RHS
Hence proved
28. Volume of cylindrical bucket $=$ Volume of conical heap of sand.
$\pi \mathrm{r}^{2} \mathrm{~h}=\frac{1}{3} \pi \mathrm{R}^{2} \times 24$
$\pi \times 18 \times 18 \times 32$
$=\frac{1}{3} \pi \mathrm{R}^{2} \times 24$

$\mathrm{R}^{2}=\frac{18 \times 18 \times 32 \times 3}{24}=\frac{18 \times 18 \times 32 \times 3}{24}$
$\mathrm{R}=36 \mathrm{~cm}$
In the $\triangle \mathrm{AOB}$ of conical heap.
$\mathrm{AB}^{2}=\mathrm{AO}^{2}+\mathrm{OB}^{2}$
$\ell^{2}=24^{2}+36^{2}$
$\ell=\sqrt{576+1296}$
$=\sqrt{1872}$
$\ell=43.27 \mathrm{~cm}=43.3 \mathrm{~cm}$
OR
Number of balls $=\frac{\text { Volume of solid sphere }}{\text { Volume of } 1 \text { spherical ball }}$

$$
\begin{aligned}
& =\frac{\frac{4}{3} \times \pi \times 3 \times 3 \times 3}{\frac{4}{3} \times \pi \times 0.3 \times 0.3 \times 0.3} \\
& =1000
\end{aligned}
$$

29. We know that an odd positive integer n is of the form $(4 q+1)$ or $(4 q+3)$ for some integer q.

Case-I When $\mathrm{n}=(4 \mathrm{q}+1)$
In this case $n^{2}-1=(4 q+1)^{2}-1$

$$
=16 q^{2}+8 q=8 q(2 q+1)
$$

which is clearly divisible by 8 .
Case-II When $\mathrm{n}=(4 \mathrm{q}+3)$
$n^{2}-1=(4 q+3)^{2}-1=16 q^{2}+24 q+8$
$=8\left(2 q^{2}+3 q+1\right)$
which is clearly divsible by 8 .
Hence, it n is an odd positive integer then $\left(n^{2}-1\right)$ is divisible by 8 .
30. Since two zeros are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$,
so $\left(x-\sqrt{\frac{5}{3}}\right)\left(x+\sqrt{\frac{5}{3}}\right)=x^{2}-\frac{5}{3}$ is a factor of the given polynomial.
Now, we divide the given polynomial by $\left(x^{2}-\frac{5}{3}\right)$ to obtain other zeros.

$$
\begin{aligned}
& x^{2}-\frac{5}{3} \int_{3 x^{4}+6 x^{3}-2 x^{2}-10 x-5}^{3 x^{4}-5 x^{2}} 4 \\
& \frac{3 x^{4}-5 x^{2}}{6 x^{3}+3 x^{2}-10 x} \\
& \frac{-6 x^{3} \quad+10 x}{+} \\
& \begin{array}{c}
\begin{array}{l}
3 x^{2}-5 \\
-\quad+ \\
0
\end{array} \frac{1}{2}
\end{array}
\end{aligned}
$$

So, $3 x^{4}+6 x^{3}-2 x^{2}-10 x-5=\left(x^{2}-\frac{5}{3}\right)$
$\left(3 x^{2}+6 x+3\right)$
Now, $3 \mathrm{x}^{2}+6 \mathrm{x}+3=3\left(\mathrm{x}^{2}+2 \mathrm{x}+1\right)=3(\mathrm{x}+1)^{2}$
$=3(x+1)(x+1)$
So its zeros are $-1,-1$,
Thus, all the zeros of given polynomial are
$\sqrt{5 / 3},-\sqrt{5 / 3},-1$ and -1.
31. Let the numerator be x and denominator be y.
\therefore Fraction $=\frac{x}{y}$
Now, according to question,
$\frac{x-1}{y}=\frac{1}{3} \quad \Rightarrow \quad 3 x-3=y$
$\therefore 3 \mathrm{x}-\mathrm{y}=3$
and $\frac{x}{y+8}=\frac{1}{4} \quad \Rightarrow \quad 4 x=y+8$
$\therefore 4 \mathrm{x}-\mathrm{y}=8$
Now, subtracting equation (ii) from (i), we have

$$
\begin{aligned}
& 3 x-y=3 \\
& 4 x-y=8 \\
& -\quad+-- \\
& \hline-x=-5 \\
& x=5
\end{aligned}
$$

Putting the value of x in equation (i), we have $3 \times 5-y=3 \Rightarrow 15-y=3 \Rightarrow 15-3=y$ $\therefore \mathrm{y}=12$
Hence, the required fraction is $\frac{5}{12}$.

OR

Let the speed of car at A be $x \mathrm{~km} / \mathrm{h}$
And the speed of car at B be $y \mathrm{~km} / \mathrm{h}$
Case $18 x-8 y=80$

$$
x-y=10
$$

Case $2 \frac{4}{3} x+\frac{4}{3} y=80$
$x+y=60$
On solving $\mathrm{x}=35$ and $\mathrm{y}=25$
Hence, speed of cars at A and B are $35 \mathrm{~km} / \mathrm{h}$ and $25 \mathrm{~km} / \mathrm{h}$ respectively
32.

Diagonals of parallelogram bisect each other
\Rightarrow midpoint of $\mathrm{AC}=$ midpoint of BD
$\Rightarrow\left(\frac{1+\mathrm{k}}{2}, \frac{-2+2}{2}\right)=\left(\frac{-4+2}{2}, \frac{-3+3}{2}\right)$
$\Rightarrow \frac{1+\mathrm{k}}{2}=\frac{-2}{2}$
$\Rightarrow \mathrm{k}=-3$
33. $200-250$ is the modal class

Mode $=\ell+\frac{\mathrm{f}_{1}-\mathrm{f}_{0}}{2 \mathrm{f}_{1}-\mathrm{f}_{0}-\mathrm{f}_{2}} \times \mathrm{h}$
$=200+\frac{12-5}{24-5-2} \times 50$
$=200+20.59=` 220.59$
34.

In $\triangle \mathrm{ABD}$ and $\triangle \mathrm{CEF}$

$$
\mathrm{AB}=\mathrm{AC}
$$

(Given)
$\Rightarrow \angle \mathrm{ABC}=\angle \mathrm{ACB}$
(Equal sides have equal oppposite angles)

$$
\begin{aligned}
& \angle \mathrm{ABD}=\angle \mathrm{ECF} \\
& \angle \mathrm{ADB}=\angle \mathrm{EFC}
\end{aligned}
$$

$$
\text { [Each } 90^{\circ} \text {] }
$$

So, $\triangle \mathrm{ABD} \sim \triangle \mathrm{CEF} \quad$ (AA - Similarity)
OR

$\angle 1=\angle 2$
$\Rightarrow \mathrm{PT}=\mathrm{PS}$
$\Delta \mathrm{NSQ} \cong \Delta \mathrm{MTR}$
$\Rightarrow \angle \mathrm{NQS}=\angle \mathrm{MRT}$
$\Rightarrow \angle \mathrm{PQR}=\angle \mathrm{PRQ}$
$\Rightarrow \mathrm{PR}=\mathrm{PQ}$
From (1) and (2)
$\frac{P T}{P R}=\frac{P S}{P Q}$
Also, $\angle \mathrm{TPS}=\angle \mathrm{RPQ}$ (common)
$\Rightarrow \triangle \mathrm{PTS} \sim \triangle \mathrm{PRQ}$ (by SAS similarity criteria)

SECTION-D

35. Steps of Construction :

Step I : Draw any ray BX making an acute angle with BC on the side opposite to the vertex A .

Step II : From B cut off 5 arcs $B_{1}, B_{2}, B_{3}, B_{4}$ and B_{5} on $B X$ so that $\mathrm{BB}_{1}=\mathrm{B}_{1} \mathrm{~B}_{2}=\mathrm{B}_{2} \mathrm{~B}_{3}=\mathrm{B}_{3} \mathrm{~B}_{4}=\mathrm{B}_{4} \mathrm{~B}_{5}$
Step III : Join B_{3} to C and draw a line through B_{5} parallel to $B_{3} C$, intersecting the extended line segment BC at C^{\prime}.
Step IV : Draw a line through C^{\prime} parallel to CA intersecting the extended line segment BA at A^{\prime} (see figure). Then $\mathrm{A}^{\prime} \mathrm{BC} C^{\prime}$ is the required triangle.
36. $\quad S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$S_{30}=\frac{30}{2}[2 a+29 d] \Rightarrow S_{30}=30 a+435 d \ldots$
$\Rightarrow S_{20}=\frac{20}{2}[2 a+19 d] \Rightarrow S_{20}=20 a+190 d$

$$
\begin{aligned}
& S_{10}=\frac{10}{2}[2 a+9 d] \Rightarrow S_{10}=10 a+45 d \\
& 3\left(S_{20}-S_{10}\right)=3[20 a+190 d-10 a-45 d] \\
& =3[10 a+145 d]=30 a+435 d=S_{30}
\end{aligned}
$$

[From (i)]
Hence, $\mathrm{S}_{30}=3\left(\mathrm{~S}_{20}-\mathrm{S}_{10}\right) \quad$ Hence proved.

OR

Sum of first seven terms,
$\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]$
$S_{7}=\frac{7}{2}[2 a+(7-1) d]=\frac{7}{2}[2 a+6 d]$
$\Rightarrow \quad 63=7 a+21 d$
$\Rightarrow a=\frac{63-21 d}{7}$
$\Rightarrow \quad S_{14}=\frac{14}{2}[2 a+13 d]$
$\Rightarrow \quad S_{14}=7[2 \mathrm{a}+13 \mathrm{~d}]=14 \mathrm{a}+91 \mathrm{~d}$
But ATQ,

$$
\begin{aligned}
& S_{1-7}+S_{8-14}=S_{14} \\
& 63+161=14 \mathrm{a}+91 \mathrm{~d} \\
\Rightarrow & 224=14 \mathrm{a}+91 \mathrm{~d} \\
& 2 \mathrm{a}+13 \mathrm{~d}=32 \\
& \left.2\left(\frac{63-21 \mathrm{~d}}{7}\right)+13 \mathrm{~d}=32 \text { (from } 1\right) \\
\Rightarrow & 126-42 \mathrm{~d}+91 \mathrm{~d}=224 \\
\Rightarrow & 49 \mathrm{~d}=98 \\
\Rightarrow & \mathrm{~d}=2 \\
\Rightarrow & \mathrm{a}=\frac{63-21 \times 2}{7}=\frac{63-42}{7}=3 \\
\Rightarrow & a_{28}=\mathrm{a}+27 \mathrm{~d}=3+27 \times 2 \\
\Rightarrow & \mathrm{a}_{28}=3+54=57
\end{aligned}
$$

37. In a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

Given : $\mathrm{A} \triangle \mathrm{ABC}$ in which $\angle \mathrm{B}=90^{\circ}$.
To prove : $\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$.
Construction : From B, Draw BD $\perp \mathrm{AC}$.

Proof :

In $\triangle \mathrm{ADB}$ and $\triangle \mathrm{ABC}$, we have :
$\angle \mathrm{BAD}=\angle \mathrm{CAB}=\angle \mathrm{A}$ (Common)
$\angle \mathrm{ADB}=\angle \mathrm{ABC}\left(\right.$ Each $\left.=90^{\circ}\right)$
$\therefore \triangle \mathrm{ADB} \sim \Delta \mathrm{ABC}$ (By AA axiom of similarity)
$\Rightarrow \frac{A D}{A B}=\frac{A B}{A C}$ (Corr. sides of similar Δs are proportional)
$\Rightarrow \mathrm{AB}^{2}=\mathrm{AD} \times \mathrm{AC}$
In $\triangle \mathrm{CDB}$ and $\triangle \mathrm{CBA}$, we have :
$\angle \mathrm{CDB}=\angle \mathrm{CBA}\left(\right.$ Each $\left.=90^{\circ}\right)$
$\angle \mathrm{BCD}=\angle \mathrm{ACB}=\angle \mathrm{C}$ (Common)
$\therefore \Delta \mathrm{CDB} \sim \Delta \mathrm{CBA}$ (By AA axiom of similarity)
$\Rightarrow \frac{D C}{B C}=\frac{B C}{A C}$ (Corr. sides of similar Δs are proportional)
$\Rightarrow \mathrm{BC}^{2}=\mathrm{DC} \times \mathrm{AC}$

Adding (1) and (2), we get
$\mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{AD} \times \mathrm{AC}+\mathrm{DC} \times \mathrm{AC}$
$=(\mathrm{AD}+\mathrm{DC}) \times \mathrm{AC}=\mathrm{AC}^{2}(\because \mathrm{AD}+\mathrm{DC}=\mathrm{AC})$
Hence, $\mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{AC}^{2}$.
38. Let OA be the tower of height h, and P be the initial position of the car when the angle of depression is 30°.

After 6 seconds, the car reaches to Q such that the angle of depression at Q is 60°. Let the speed of the car be v metre per second. Then,

$$
P Q=6 v \quad(\because \text { Distance }=\text { speed } \times \text { time })
$$

and let the car take t seconds to reach the tower OA from Q (Figure). Then $\mathrm{OQ}=\mathrm{vt}$ metres.

Now, in $\triangle \mathrm{AQO}$ we have
$\tan 60^{\circ}=\frac{\mathrm{OA}}{\mathrm{QO}}$
$\Rightarrow \sqrt{3}=\frac{\mathrm{h}}{\mathrm{vt}} \quad \Rightarrow \mathrm{h}=\sqrt{3} \mathrm{vt}$
Now, in $\triangle \mathrm{APO}$, we have
$\tan 30^{\circ}=\frac{\mathrm{OA}}{\mathrm{PO}}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{h}{6 v+v t} \Rightarrow \sqrt{3} h=6 v+v t$

Now, substituting the value of h from (i) and into (ii), we have
$\sqrt{3} \times \sqrt{3} \quad \mathrm{vt}=6 \mathrm{v}+\mathrm{vt}$
$\Rightarrow 3 \mathrm{vt}=6 \mathrm{v}+\mathrm{vt} \Rightarrow 2 \mathrm{vt}=6 \mathrm{v} \Rightarrow \mathrm{t}=\frac{6 \mathrm{v}}{2 \mathrm{v}}=3$

Hence, the car will reach the tower from Q in 3 seconds.

OR

Let the speed of car be $\mathrm{x} \mathrm{m} /$ minutes
In $\triangle \mathrm{ABC}$
$\frac{h}{y}=\tan 45^{\circ}$
$\Rightarrow \mathrm{h}=\mathrm{y}$
In $\triangle \mathrm{ABD}$
$\frac{h}{y+12 x}=\tan 30^{\circ}$
$\Rightarrow h \sqrt{3}=y+12 x$
$\Rightarrow \mathrm{y} \sqrt{3}-\mathrm{y}=12 \mathrm{x}$
$\Rightarrow \mathrm{y}=\frac{12 \mathrm{x}}{\sqrt{3}-1}=\frac{12 \mathrm{x}(\sqrt{3}+1)}{2}$
$\Rightarrow \mathrm{y}=6 \mathrm{x}(\sqrt{3}+1)$
Time taken from C to $B=6(\sqrt{3}+1)$ minutes
39. Let $\mathrm{BC}=\mathrm{rcm}, \mathrm{DE}=\mathrm{Rcm}$ and height of cone $\mathrm{h}=10 \mathrm{~cm}$

Also, $\triangle \mathrm{ABC} \sim \Delta \mathrm{ADE}$

$\therefore \quad \frac{\mathrm{AB}}{\mathrm{AD}}=\frac{\mathrm{BC}}{\mathrm{DE}}=\frac{\mathrm{AC}}{\mathrm{AE}}=\frac{1}{2}$
i.e., $\mathrm{BC}=\frac{1}{2} \mathrm{DE}=\frac{1}{2} \times \mathrm{R}$ or $\mathrm{r}=\frac{\mathrm{R}}{2}$

Now, $\frac{\text { Volume of cone }}{\text { Volume of the frustum }}$
$=\frac{\frac{1}{3} \pi r^{2} \mathrm{~h}}{\frac{1}{3} \pi \frac{\mathrm{~h}}{2}\left[\mathrm{R}^{2}+\mathrm{r}^{2}+\mathrm{rR}\right]}=\frac{\mathrm{R}^{2}}{4\left[\mathrm{R}^{2}+\frac{\mathrm{R}^{2}}{4}+\frac{\mathrm{R}^{2}}{2}\right]}$
$=\frac{1}{4 \cdot \frac{7}{4}}=\frac{1}{7}$
\therefore The requried ratio $=1: 7$
40.

Marks	Cumulative Frequency	Marks	Cumulative Frequency
Less than 5	4	More than 0	100
Less than 10	10	More than 5	96
Less than 15	20	More than 10	90
Less than 20	30	More than 15	80
Less than 25	55	More than 20	70
Less than 30	77	More than 25	45
Less than 35	95	More than 30	23
Less than 40	100	More than 35	5

Hence, median marks $=24$

OR

Class Interval	Frequency	cf
$0-100$	2	2
$100-200$	5	7
$200-300$	x	$7+x$
$300-400$	12	$19+x$
$400-500$	17	$36+x$
$500-600$	20	$56+x$
$600-700$	y	$56+x+y$
$700-800$	9	$65+x+y$
$800-900$	7	$72+x+y$
$900-1000$	4	$76+x+y$

$\mathrm{N}=100$
$\Rightarrow 76+\mathrm{x}+\mathrm{y}=100$
$\Rightarrow \mathrm{x}+\mathrm{y}=24$
Median $=525$
$\Rightarrow 500-600$ is median class

Median $=\ell+\frac{\frac{\mathrm{n}}{2}-\mathrm{cf}}{\mathrm{f}} \times \mathrm{h}$

