## 10. STRAIGHT LINES

## CO-ORDINATES

## 1. Rectangular coordinate system

A system obtained by taking two mutually $\perp r$ lines in a plane. The horizontal line is known as $x$-axis and the vertical line is known as $y$-axis. The point of intersection of the two axes is known as origin, denoted by O and its coordinates is $(0,0)$.

The two mutually perpendicular lines divide a plane into four regions, each region is known as quadrant. Quadrants are taken in the anti-clockwise direction from the positive $x$-axis.

quadrant in graph

## 2. Signs of co-ordinates in different quadrants

| Quadrants | I | II | III | IV |
| :---: | :---: | :---: | :---: | :---: |
| Co-ordinates | + | - | - | + |
| $x$ | + | + | - | - |

## 3. Distance formula.

Distance between two points $\mathrm{A}\left(x_{1}, y_{1}\right)$ and $\mathrm{B}\left(x_{2}, y_{2}\right)$ is

$$
A B=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \quad(\text { or }) \quad A B=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}
$$


E.g.: a) Find the distance between two points $\mathrm{A}(2,3)$ and $\mathrm{B}(5,-1)$.

$$
\begin{aligned}
A B & =\sqrt{(5-2)^{2}+(-1-3)^{2}} \\
& =\sqrt{3^{2}+(-4)^{2}}=\sqrt{9+16}=\sqrt{25}=5 \text { units }
\end{aligned}
$$

b) $A(a \cos \theta, a \sin \theta)$ and $B(b \cos \theta, b \sin \theta)$

$$
\begin{aligned}
A B & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(b \cos \theta-a \cos \theta)^{2}+(b \sin \theta-a \sin \theta)^{2}} \\
& =\sqrt{[\cos \theta(b-a)]^{2}+[\sin \theta(b-a)]^{2}} \\
& =\sqrt{(b-a)^{2}\left[\cos ^{2} \theta+\sin ^{2} \theta\right]}=\sqrt{(b-a)^{2} \times 1}=(b-a)
\end{aligned}
$$

4. Distance from origin to a point:
E.g.: Find the distance from origin to a point $(3,4)$

$$
O P=\sqrt{3^{2}+4^{2}}=\sqrt{9+16}=\sqrt{25}=5 \text { units }
$$

5. Using distance formula, we can prove that the given points are the vertices of a:
a) rectangle
$A B=C D$
$\mathrm{AB}=\mathrm{BC}$
$\mathrm{AC}=\mathrm{BD}$

b) Parallelogram
$\mathrm{AB}=\mathrm{DC}$
$\mathrm{AD}=\mathrm{BC}$

$A C \neq B D$
c) Square
$\mathrm{AD}=\mathrm{AB}=\mathrm{BC}=\mathrm{CD}$
$A C=B D$

d) Rhombus
$\mathrm{AB}=\mathrm{DC}=\mathrm{AD}=\mathrm{BC}$
$A C \neq B D$


## e) Isosceles triangle

Any two sides are equal.
$\mathrm{AB}=\mathrm{AC}$ (or) $\mathrm{BC}=\mathrm{BA}$ (or) $\mathrm{CB}=\mathrm{CA}$

## Remesh's Maths Coaching

## f) Equilateral triangle

$\mathrm{AB}=\mathrm{BC}=\mathrm{AC}$

## g) Right angled triangle



Using 'Pythagoras' theorem, square of the largest side is equal to sum of the squares of other two sides.
i.e., $A B^{2}=B C^{2}+A C^{2}$ (or) $B C^{2}=A B^{2}+A C^{2}$ (or) $A C^{2}=A B^{2}+B C^{2}$
h) Right angled isosceles triangle
(e) $+(\mathrm{g})$
i) Collinear points: If three points lie on a line, then they are known as collinear points.

If three points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are collinear, then $\mathrm{AB}+\mathrm{BC}=\mathrm{AC}$ (or) BC $+\mathrm{AC}=\mathrm{AB}$
(or) $\mathrm{AC}+\mathrm{AB}=\mathrm{BC}$.

## 6. Section formula

Coordinates of a point R which divides the line joining two points $A\left(x_{1} y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ in the ratio $m: n$
a) internally is

$$
R=\left(\frac{m x_{2}+n x_{1}}{m+n}, \frac{m y_{2}+n y_{1}}{m+n}\right)
$$


b) externally is

$$
R=\left(\frac{m x_{2}-n x_{1}}{m-n}, \frac{m y_{2}-m y_{1}}{m-n}\right)
$$



## 7. Midpoint formula

If $R(x, y)$ be the midpoint of $A B$ then the ratios $m$ and $n$ are equal.

$$
\begin{aligned}
\therefore R & =\left(\frac{m x_{2}+m x_{1}}{m+m}, \frac{m y_{2}+m y_{1}}{m+m}\right) \\
& =\left(\frac{m\left(x_{2}+x_{1}\right)}{2 m} \frac{m\left(y_{2}+y_{1}\right)}{2 m}\right) \\
& =\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \text { is known as midpoint formula. }
\end{aligned}
$$

Note: Using midpoint formula, we can prove the points are the vertices of a rectangle, parallelogram, square and rhombus using the formula,
midpoint of diagonal $A C=$ midpoint of diagonal BD
8. Area of a triangle.

If $A, B$ and $C$ be the vertices of a triangle $A B C$, then
Area of a $\triangle A B C=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]$
(or)

$$
\left.\begin{aligned}
\text { Area of triangle } \mathrm{ABC} & =\frac{1}{2} \left\lvert\, \begin{array}{ll}
x_{1} \\
x_{2} & y_{y_{1}} \\
x_{3} & y_{2} \\
x_{3} \\
x_{1}
\end{array} y_{y_{1}}\right.
\end{aligned} \right\rvert\,
$$

E.g.: Find the the area of the triangle with vertices $A(2,1) B(3,5)$ and $C(0,-2)$

$$
\begin{aligned}
\operatorname{Ar}(\triangle A B C) & =\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right] \\
& =\frac{1}{2}[2(5+2)+3(-2-1)+0(1-5)] \\
& =\frac{1}{2}[2(7)+3(-3)] \\
& =\frac{1}{2}[14-9] \\
& =\frac{1}{2}(5)=\frac{5}{2} \text { squnits }
\end{aligned}
$$

## Alternate Method:

$$
\left.\begin{aligned}
& \operatorname{Ar}(\triangle A B C)=\frac{1}{2}{ }_{2}^{2} X_{2}^{3} X_{5}^{1} \\
& 0 X_{2}
\end{aligned} \right\rvert\,
$$

9. Collinearity of 3 points: If $A, B, C$ are collinear, then $\operatorname{ar}(\triangle A B C)=0$
10. If $A, B, C$ and $D$ are the vertices of a quadrilateral $A B C D$, then

Area of quadrilateral $\mathrm{ABCD}, \mathrm{A}=\operatorname{ar}(\triangle A D C)+\operatorname{ar}(\triangle A B C)$

## (OR)



Find the area of the quadrilateral $A B C D$, having vertices $A(2,1), B(5,2)$, $C(3,6)$ and $D(-2,3)$.

$$
\text { Area of } \begin{aligned}
\triangle A D C & =\frac{1}{2}[2(6-3)+3(3-1)+-2(1-6)] \\
& =\frac{1}{2}[2(3)+3(2)-2(-5)]=\frac{1}{2}[6+6+10] \\
& =\frac{1}{2}(22)=11 \text { squnits }
\end{aligned}
$$



Area of $\triangle A B C=\frac{1}{2}[2(2-6)+5(6-1)+3(1-2)]$

$$
\begin{aligned}
& =\frac{1}{2}[2(-4)+5(5)+3(-1)]=\frac{1}{2}[-8+25-3] \\
& =\frac{1}{2}(14)=7 \text { sq.units }
\end{aligned}
$$

$\therefore$ area of the quadrilateral $\mathrm{ABCD}=11+7=18$ sq.units

## Alternate Method:

$$
\begin{aligned}
A & =\frac{1}{2}\left|\begin{array}{c}
2 \\
n_{2} X_{2}^{1} \\
3 \\
3 \\
-2 X_{6} \\
2 \\
2
\end{array}\right|=\frac{1}{2}[4+30+9+(-2)-5-6-(-12)-6] \\
& =\frac{1}{2}[4+30+9-2-5-6+12-6] \\
& =\frac{1}{2}[4+30+9-2-5]=\frac{1}{2}(36)=18 \text { sq.units }
\end{aligned}
$$



## 11. SLOPE OF A LINE

$>$ If the inclination of a line with the + ve direction of the x -axis is $\theta$, then slope of the line, $m=\tan \theta$


| 1 | $0^{0}$ | $m=\tan 0=0 \quad$ (the line is $\\|$ to $x-$ axis or $\perp r$ to $y$-axis) |
| :--- | :--- | :--- |
| 2 | $30^{0}$ | $m=\tan 30=\frac{1}{\sqrt{3}}$ |
| 3 | $45^{0}$ | $m=\tan 45=1$ |
| 4 | $60^{\circ}$ | $m=\tan 60^{\circ}=\sqrt{3}$ |
| 5 | $90^{\circ}$ | $m=\tan 90=\infty($ a line is $\perp r$ to $x-$ axis or $\\|$ el to $y-$ axis $)$ |
| 6 | $120^{\circ}$ | $m=\tan 120=\tan (180-60)=-\tan 60=-\sqrt{3}$ |
| 7 | $150^{\circ}$ | $m=\tan 150=\tan (180-30)=-\tan 30=-\frac{1}{\sqrt{3}}$ |

$>$ Slope of the line passing through two points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ is

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}(\text { or }) \quad m=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}
$$

(Case i): When $\theta$ is acute $\left(<90^{\circ}\right)$.
$\angle B A N=\angle B T X=\theta$
$A N=L M=O M-O L=x_{2}-x_{1}$
$B N=B M-N M=B M-A L=y_{2}-y_{1}$


In $\triangle B A N, \tan \theta=\frac{B N}{A N} \Rightarrow m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

Case ii) when $\theta$ is obtuse $\left(>90^{0}\right)$.
$\angle B A N=\angle B T O=180-\theta$
$N A=M L=O L-O M=x_{1}-x_{2}$
$B N=B M-N M=B M-A L=y_{2}-y_{1}$


## Remesh's Maths Coaching

In $\triangle B A N, \tan (180-\theta)=\frac{B N}{N A}$

$$
\begin{align*}
-\tan \theta & =\frac{y_{2}-y_{1}}{x_{1}-x_{2}} \\
-\tan \theta & =\frac{y_{2}-y_{1}}{-\left(x_{2}-x_{1}\right)} \\
\tan \theta & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \Rightarrow m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \tag{2}
\end{align*}
$$

From (1) and (2), we have slope of a line, $n=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
> Angle between the lines having slopes $m_{1}$ and $m_{2}$ is $\tan \theta=\frac{m_{2}-m_{1}}{1+m_{1} m_{2}}$
$\rightarrow$ Acute angle between the lines having slopes $m_{1}$ and $m_{2}$ is $\tan \theta=\left|\frac{m_{2}-m_{1}}{1+m_{1} m_{2}}\right|$

> If three points $\mathrm{A}, \mathrm{B}$ and C are collinear or lie on a line, then Slope of $A B=$ slope of $B C$ (or) Slope of $A B=$ slope of $A C$ (or) Slope of $A C=$ slope of $B C$
$>$ If two lines are parallel, then slopes are equal. i.e., $m_{1}=m_{2}$
> If two lines are perpendicular, then product of their slopes is equal to -1 . i.e., $m_{1} m_{2}=-1$.

## Equation of a straight line

> Equation of the x axis is $\mathrm{y}=0$

- Equation of the y axis is $x=0$

Equation of a straight line parallel to the x axis is $y=b$
$>$ Equation of a straight line parallel to the axis is $x=a$
$>$ Equation of a straight line having slope ' $m$ ' and y intercept ' c ' is $y=m x+c$
$>$ Equation of a straight line having slope ' $m$ ' and passing through a point ( $x_{1}, y_{1}$ ) is $y-y_{1}=m\left(x-x_{1}\right)$
$>$ Equation of a straight line passing through two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is $\frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}$
$>$ Equation of a straight line making intercepts 'a' and ' b ' on the coordinate axes is $\frac{x}{a}+\frac{y}{b}=1$
> Equation of a straight line whose perpendicular distance from the origin is ' p ' and the perpendicular makes an angle $\omega$ with the positive direction of the x axis is $x \cos \omega+y \sin \omega=p$

## Remesh's Maths Coaching

> Equation of a straight line parallel to a given line $A x+B y+C=0$ is $A x+B y+K=0$, where ' $K$ ' is any constant.
> Equation of a straight line perpendicular to a given line $A x+B y+C=0$ is $B x-A y+K=0$, where ' $K$ ' is any constant.
$>$ General form of a straight line is $A x+B y+C=0$, where $\mathrm{A}, \mathrm{B}$ and C are constants.
> Reduction into slope-intercept form:
General form of a straight line is $A x+B y+C=0$
$B y=-A x-C$
$y=\frac{-A x-C}{B}$
$y=\left(-\frac{A}{B}\right) x+\left(-\frac{C}{B}\right)$
Comparing with $y=m x+c$, we have,
i. slope, $m=-\frac{A}{B}$
ii. y-intercept, $c=-\frac{C}{B}$
> Reduction into intercept form:
General form of a straight line is $A x+B y+C=0$
$A x+B y=-C$
$\frac{A x}{-C}+\frac{B y}{-C}=1 \quad($ dividing by $-C)$
$\frac{x}{\left(-\frac{C}{A}\right)}+\frac{y}{\left(-\frac{C}{B}\right)}=1$
Comparing with $\frac{x}{a}+\frac{y}{b}=1$, we have,
i. $\quad$ x-intercept, $a=-\frac{C}{A}$
ii. y-intercept, $b=-\frac{C}{B}$
$>$ Reduction into normal form:
Let $x \cos \omega+y \sin \omega=p$ be the normal form of the equation of a straight line is $A x+B y+C=0$ or $A x+B y=-C$, then $\left( \pm \frac{A}{\sqrt{A^{2}+B^{2}}}\right) x+\left( \pm \frac{B}{\sqrt{A^{2}+B^{2}}}\right) y= \pm \frac{C}{\sqrt{A^{2}+B^{2}}}$ is the normal form of the straight line.
Note: The perpendicular distance from origin the line $A x+B y+C=0$ is $p=\left|\frac{C}{\sqrt{A^{2}+B^{2}}}\right|$.

## Remesh's Maths Coaching

E.g.: Reduce the equation $\sqrt{3} x+y-8=0$ into normal form. Also find $p$ and $\omega$.

$$
\begin{align*}
& \sqrt{3} x+y=8  \tag{1}\\
& \sqrt{A^{2}+B^{2}}=\sqrt{(\sqrt{3})^{2}+1^{2}}=\sqrt{3+1}=\sqrt{4}=2 \\
& \frac{\sqrt{3}}{2} x+\frac{1}{2} y=\frac{8}{2} \Rightarrow \frac{\sqrt{3}}{2} x+\frac{1}{2} y=4
\end{align*}
$$

Comparing with $x \cos \omega+y \sin \omega=p$
$x$ and $y$ in I quadrant.
$\cos \omega=\frac{\sqrt{3}}{2} \Rightarrow \omega=30^{\circ}$
$\therefore x \cos 30^{\circ}+y \sin 30^{\circ}=4$, is the normal form.
Here, $\omega=30^{\circ}, p=4$.
$>$ Perpendicular distance from one point $\left(x_{1}, y_{1}\right)$ to a line $A x+B y+C=0$ is
$d=\left|\frac{A x_{1}+B y_{1}+C}{\sqrt{A^{2}+B^{2}}}\right|$.
$>$ Distance between parallel lines $A x_{1}+B y_{1}+C_{1}=0$ and $A x_{2}+B y_{2}+C_{2}=0$ is $d=\left|\frac{C_{2}-C_{1}}{\sqrt{A^{2}+B^{2}}}\right|$.
$>$ Point of intersection between the lines $A x_{1}+B y_{1}+C_{1}=0$ and $A x_{2}+B y_{2}+C_{2}=0$.
Either solving the two lines (using the solution of simultaneous linear equations in 2 unknowns) or using the formula $(x, y)=\left(\frac{b_{1} c_{2}-b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}, \frac{c_{1} a_{2}-c_{2} a_{1}}{a_{1} b_{2}-a_{2} b_{1}}\right)$.
$>$ Concurrent lines: If three or more lines are intersecting at a point, then the lines are known as concurrent lines.
> To prove that the given three lines are concurrent:
i. Find the point of intersection of any two lines,
ii. Substitute this point in the third line,
iii. If it satisfies, then the lines are concurrent, otherwise not concurrent.
> To find the foot of the perpendicular drawn from one point to a line.

Equation of $A B$ is $3 x-4 y-16=0$
Slope of $\mathrm{AB}=-\frac{A}{B}=-\frac{3}{-4}=\frac{3}{4}$
$\therefore$ Slope of $\mathrm{PM}=\frac{-1}{\text { slope of } A B}=-\frac{4}{3} \quad[\because A B \perp P M]$
Equation of PM: $y-y_{1}=m\left(x-x_{1}\right)$

$y-3=-\frac{4}{3}(x--1)$
$3 y-9=-4(x+1)$
$3 y-9=-4 x-4 \Rightarrow 3 y-9+4 x+4=0 \Rightarrow 4 x+3 y-5=0$
Solving (1) and (2), we have
$(1) \times 3+(2) \times 4 \Rightarrow$
$9 x-12 y-48=0$
$16 x+12 y-20=0$
$25 x-68=0$
$\therefore 25 x=68 \Rightarrow x=\frac{68}{25}$
in (2)
$4 \times \frac{68}{25}+3 y-5=0$
$3 y=5-\frac{272}{25} \Rightarrow 3 y=\frac{125-272}{25} \Rightarrow 3 y=\frac{-147}{25}$
$\Rightarrow y=\frac{-49}{25}$
$\therefore$ the foot of the perpendicular from $P(-1,3)$ to the line $3 x-4 y-16=0$ is $M\left(\frac{68}{25},-\frac{49}{25}\right)$.
To find the image of the point to a line.
Equation of $A B$ is $3 x-4 y-16=0$ $\qquad$
Slope of $\mathrm{AB}=-\frac{A}{B}=-\frac{3}{-4}=\frac{3}{4}$
$\therefore$ Slope of PM $=\frac{-1}{\text { slope of } A B}=-\frac{4}{3} \quad[\because A B \perp P M]$

Equation of PM: $y-y_{1}=m\left(x-x_{1}\right)$

$$
\begin{aligned}
& y-3=-\frac{4}{3}(x--1) \\
& 3 y-9=-4(x+1) \\
& 3 y-9=-4 x-4 \Rightarrow 3 y-9+4 x+4=0 \Rightarrow 4 x+3 y-5=0
\end{aligned}
$$



Solving (1) and (2), we have
(1) $\times 3+(2) \times 4 \Rightarrow$
$9 x-12 y-48=0$
$16 x+12 y-20=0$
$25 x-68=0$
$\therefore 25 x=68 \Rightarrow x=\frac{68}{25}$
in (2)
$4 \times \frac{68}{25}+3 y-5=0$
$3 y=5-\frac{272}{25} \Rightarrow 3 y=\frac{125-272}{25} \Rightarrow 3 y=\frac{-147}{25}$
$\Rightarrow y=\frac{-49}{25}$
$\therefore$ the foot of the perpendicular from $P(-1,3)$ to the line $3 x-4 y-16=0$ is $M\left(\frac{68}{25},-\frac{49}{25}\right)$.
Now M is the midpoint of $P P^{\prime}$, using midpoint formula,
$\frac{x+-1}{2}=\frac{68}{25} \Rightarrow x-1=\frac{136}{25} \Rightarrow x=\frac{136}{25}+1=\frac{136+25}{25}=\frac{161}{25}$
$\frac{x+3}{2}=-\frac{49}{25} \Rightarrow x+3=-\frac{98}{25} \Rightarrow x=-\frac{98}{25}+1=\frac{-98+25}{25}=-\frac{73}{25}$
$\therefore$ the image is $\left(\frac{161}{25},-\frac{73}{25}\right)$.
$>$ Equation of a straight line passing through the point of intersection of the lines $L_{1}: A x_{1}+B y_{1}+C_{1}=0$ and $L_{2}: A x_{2}+B y_{2}+C_{2}=0$ is $L_{1}+k L_{2}=0$, where ' k ' be any constant.
E.g.:

1. Find the equation of a straight line passing through the point of intersection of the lines $2 x-y+1=0$ and $x+2 y+3=0$ passing through $(2,1)$.

Required equation is $L_{1}+k L_{2}=0$

$$
\begin{equation*}
2 x-y+1+k(x+2 y+3)=0 \tag{1}
\end{equation*}
$$

Since (1) passes through $(2,1)$
$2(2)-(1)+4+k[(2)+2(1)+3]=0$
$4-1+4+k(2+2+3)=0$
$7+7 k=0 \Rightarrow 7 k=-7 \Rightarrow k=-1$
$\ln (1)$, we have, $2 x-y+1+-1(x+2 y+3)=0$

$2 x-y+1+-x-2 y-3=0 \Rightarrow x-3 y-2=0$

## Remesh's Maths Coaching

2. Find the equation of a straight line passing through the point of intersection of the lines $2 x-y+1=0$ and $x+2 y+3=0$ parallel to the line $2 x-y+2=0$.

Required equation is $L_{1}+k L_{2}=0$
$2 x-y+1+k(x+2 y+3)=0$ $\qquad$
$(2+k) x+(2 k-1) y+(3 k+1)=0$ $\qquad$
Slope of (2) is $m_{1}=-\frac{A}{B}=-\frac{2+k}{2 k-1}$
Slope of the given line is $m_{2}=-\frac{A}{B}=-\frac{2}{-1}=2$
Since the lines are parallel, slopes are equal. i.e.,

$$
\begin{aligned}
m_{1}= & m_{2} \Rightarrow-\frac{2+k}{2 k-1}=2 \\
& \Rightarrow-(2+k)=2(2 k-1) \\
& \Rightarrow-2-k=4 k-2 \Rightarrow-2+2=4 k+k \\
& \Rightarrow 5 k=0 \Rightarrow k=0
\end{aligned}
$$

Since (1) passes through $(2,1)$
$2(2)-(1)+4+k[(2)+2(1)+3]=0$
$4-1+4+k(2+2+3)=0$
$7+7 k=0 \Rightarrow 7 k=-7 \Rightarrow k=-1$
$\ln (1)$, we have, $2 x-y+1+-1(x+2 y+3)=0$
$2 x-y+1+-x-2 y-3=0 \Rightarrow x-3 y-2=0$
$\ln (1)$, we have,
$2 x-y+1+0(x+2 y+3)=0$
$2 x-y+1=0$ is the required equation.
3. Find the equation of a straight line passing through the point of intersection of the lines
$2 x-y+1=0$ and $x+2 y+3=0$ perpendicular to the line $3 x-2 y+4=0$.

Required equation is $L_{1}+k L_{2}=0$
$2 x-y+1+k(x+2 y+3)=0$. $\qquad$
$(2+k) x+(2 k-1) y+(3 k+1)=0$ $\qquad$
Slope of (2) is $m_{1}=-\frac{A}{B}=-\frac{2+k}{2 k-1}$
Slope of the given line is $m_{2}=-\frac{A}{B}=-\frac{-3}{-2}=-\frac{3}{2}$
Since the lines are perpendicular,

$m_{1} m_{2}=-1 \Rightarrow-\frac{2+k}{2 k-1} \times-\frac{3}{2}=1$
$\frac{2+k}{2 k-1} \times \frac{3}{2}=1 \Rightarrow \frac{3(2+k)}{2(2 k-1)}=1 \Rightarrow \frac{6+3 k}{4 k-2}=1$
$6+3 k=4 k-2 \Rightarrow 6+2=4 k-3 k \Rightarrow k=8$
$\ln (1)$, we have,
$2 x-y+1+8(x+2 y+3)=0$
$2 x-y+1+8 x+16 y+24=0 \Rightarrow 10 x+15 y+25=0$
$2 x+3 y+5=0$ is the required equation.
4. Find the equation of a straight line passing through the point of intersection of the lines $2 x-y+1=0$ and $x+2 y+3=0$ and has $x$ intercept 3 .

Required equation is $L_{1}+k L_{2}=0$
$2 x-y+1+k(x+2 y+3)=0$
Since the required line has $x$ intercept 3 , (1) passes through the point $(3,0)$
$2(3)-0+1+k(3+2(0)+3)=0$
$6+1+k(6)=0 \Rightarrow 6 k=-7 \Rightarrow k=-\frac{7}{6}$


In (1), we have,
$2 x-y+1+-\frac{7}{6}(x+2 y+3)=0$
$12 x-6 y+6-7(x+2 y+3)=0$
$12 x-6 y+6-7 x-14 y-21=0$
$5 x-20 y-15=0$, is the required equation.

