Sample Questions

Question 1:

Determine the equation of the straight line whose slope is 2 and y-intercept is 9.

Solution:

$$y = mx + c$$
Here $m = 2$, $c = 9$

$$v = 2x + 9$$

Question 2:

Determine the equation of the straight line whose slope is 3 and x-intercept is 3.

Solution:

$$y = m(x-d)$$
Here $m = 3$, $d = 3$
 $y = 3 \times (x-3)$
 $y = 3x-9$

$$3x-y-9=0$$

Question 3:

Intersecting the x axis at a distance of 4 units to the left of origin with slope -5

Solution:

$$y = m(x-d)$$

Here $m = -5$, $d = -4$
 $y = -5 \times (x + 4)$
 $y = -5x + 20$
 $5x + y - 20 = 0$

Question 4:

Determine the equation of the straight line passing through (-1, 2) and having slope $\frac{2}{7}$

Solution:

The point-slope form is

$$y - y_1 = m(x - x_1)$$
Here $(x_1, y_1) = (-1, 2)$ and $m = \frac{2}{7}$

$$\therefore \qquad y - 2 = \frac{2}{7}(x + 1)$$

$$7y - 14 = 2x + 2$$

$$2x - 7y + 16 = 0$$

Question 5:

Determine the equation of the straight line passing through the points (1, 2) and (3, -4).

Solution:

The equation of a straight line passing through two points is

$$\frac{y-y_1}{y_2-y_1} = \frac{x-x_1}{x_2-x_1}$$
Here $(x_1, y_1) = (1, 2)$ and $(x_2, y_2) = (3, -4)$

$$\therefore \frac{y-2}{-4-2} = \frac{x-1}{3-1}$$

$$\frac{y-2}{-6} = \frac{x-1}{-2}$$

$$2(y-2) = 6(x-1)$$

$$3x + y = 5$$

Question 6:

Find slope of the straight line passing through the points (-3, 2) and (3, 4).

Solution:

Slope m =
$$\frac{y_2 - y_1}{x_2 - x_1}$$

= $\frac{4 - 2}{3 - (-3)} = \frac{2}{6}$
= $\frac{1}{3}$

Question 7:

Find the length of the perpendicular from (2, -3) to the line 2x - y + 9 = 0

Solution:

Perpendicular distance:

$$d = \left| \frac{Ax_1 + By_2 + C}{\sqrt{A^2 + B^2}} \right|$$

$$= \left| \frac{2(2) - (-3) + 9}{\sqrt{(2)^2 + (-1)^2}} \right|$$

$$= \frac{16}{\sqrt{5}} \text{ units}$$

Question 8:

Find the equation of the straight line, if the perpendicular from the origin makes an angle of 120° with x-axis and the length of the perpendicular from the origin is 6 units.

Solution:

$$x \cos \omega + y \sin \omega = p$$

$$x \cos \omega + y \sin \omega = p$$

Here
$$\omega = 120^{\circ}; p = 6$$

$$\therefore \qquad x\left(\frac{-1}{2}\right) + y\left(\frac{\sqrt{3}}{2}\right) = 6$$
$$x - \sqrt{3}y + 12 = 0$$

Question 9:

Show that the straight lines 2x + y - 9 = 0 and 2x + y - 10 = 0 are parallel.

Solution:

Slope of the straight line 2x + y - 9 = 0 is $m_1 = -2$

Slope of the straight line 2x + y - 10 = 0 is $m_2 = -2$

$$\therefore m_1 = m_2$$

: Lines are parallel

Question 10:

Show that the two straight lines whose equations are x + 2y + 5 = 0 and 2x + 4y - 5 = 0 are parallel.

Solution:

The two given equations are

$$x + 2y + 5 = 0$$

$$2x + 4y - 5 = 0$$

The coefficients of x and y are proportional and therefore they are parallel.

Question 11:

Find the distance between the parallel lines 2x + 3y - 6=0 and 2x + 3y + 7 = 0.

Solution:

The distance between the parallel lines is

$$d = \frac{C_1 - C_2}{\sqrt{A^2 + B^2}}$$

Here
$$C_1 = -6$$
, $C_2 = 7$, $A = 2$, $B = 3$

The required distance is
$$\left| \frac{-6-7}{\sqrt{2^2+3^2}} \right| = \sqrt{13}$$

EXERCISE

1.

a) The Which one of the following pair of straight lines are parallel?

$$x-2y-4 = 0; 2x-3y-4 = 0$$

 $x-2y-4 = 0; x-2y-5 = 0$
 $2x-2y-8 = 0; 3x-3y-8 = 0$
 $2x-3y-8 = 0; 3x-2y-8 = 0$

b) Equation of a straight line is 3x - 4y + 10 = 0. Convert it into the intercept form and write the x-intercept and y intercept.

c) Find the equation of the Line perpendicular to the line x - 7y + 5 = 0 and having x - intercept 3.

(March 2016)

2.

- a) Slope of a line making an angle 135° with the positive direction of the x- axis is
- b) Find the equation of the line l_1 perpendicular to l_2 and passing through the point (2,3).
- c) Find the equation of line passing through the intersection of 4x y + 7 = 0 and which is parallel to 5x + 4y 20 = 0

OR

(Imp 2015)

3.

- a) Slope of the line 2x + 3y + 5 = 0 is...
- b) Find the equation of the line L parallel to L' and passing through (2,2).
- c) Find the distance of the lines L and L' from the origin. Also find the distance between the lines L and L'.

(Imp 2015)

4.

- a) Find the equation of the line passing through the points (3, -2) and (-1,4).
- b) Reduce the equation $\sqrt{3}x + y 8 = 0$ into normal form.
- c) If the angle between two lines is $\frac{\pi}{4}$ and slope of one of the lines is $\frac{1}{2}$, find the slope of the other line.

(March 2015)