CHAPTER 2

RELATIONS AND FUNCTIONS

Ordered Pair

A pair of numbers or elements grouped together in a definite order is known as ordered pair. If a and b are any two numbers, then (a, b) is called ordered pair a, b. Here ' a ' is known as first element or x element or x coordinate or abscissa and ' b ' is known as second element or y element or y co-ordinate or ordinate.
E.g.: $(2,3),(-1,-2),\left(\frac{1}{2}, \frac{2}{3}\right),(x, y)$, etc. are ordered pairs.

Note: $\{a, b\}=\{b, a\}$ but $(a, b) \neq(b, a)$ unless $a=b$

Cartesian product of sets

If A and B be any two non-empty sets, then the Cartesian product or cross product of $A \times B$ is the set of all ordered pairs of elements from A to B and the Cartesian product or cross product of $B \times A$ is the set of all ordered pairs of elements from B to A.
i.e., $A \times B=\{(x, y): x \in A, y \in B\}$.

And $B \times A=\{(x, y): x \in B, y \in A\}$

Note: If either A or B is a null set, then $\mathrm{A} \times \mathrm{B}$ will also be a null set, i.e., $\mathrm{A} \times \mathrm{B}=\phi$ and $\mathrm{B} \times \mathrm{A}=\phi$

Note:

- Two ordered pairs are equal, iff the corresponding first elements are equal and the second elements are also equal. i.e., if $(a, b)=(c, d) \Rightarrow a=c$ and $b=d$
- If there are m elements in A and n elements in B, then there will be ' $m n$ ' elements in $A \times B$. i.e., if $n(A)=m$ and $n(B)=n$, then $n(A \times B)=m n$ and $n(B \times A)=n m=m n$ elements.
- If A and B are non-empty sets and either A or B is an infinite set, then $A \times B$ is also infinite.
- If $\mathrm{A}=\mathrm{B}$, then $\mathrm{A} \times \mathrm{B}$ becomes $\mathrm{A} \times \mathrm{A}$ and is denoted by A^{2}.
- $A \times A=\{(a, b): a, b \in A\}$. Here (a, b) is called an ordered doublet.
- $A \times A \times A=\{(a, b, c): a, b, c \in A\}$. Here (a, b, c) is called an ordered triplet.
- If set A has m elements and set B has n elements, then number of subsets of $A \times B$ or $A \times B=2^{m n}$.
- The Cartesian product $R \times R=\{(x, y): x, y \in R\}$ represents the coordinates of all points in the two dimensional space and the Cartesian product $R \times R \times R=\{(x, y, z): x, y, z \in R\}$ represents the coordinates of all points in the three dimensional space.
- If a set A has n elements, then $n(A \times A)=n^{2}$ elements.
- If a set A has n elements, then $n(A \times A \times A)=n^{3}$ elements.

RELATIONS

Relation means an association of two objects according to some property possessed by them.
E.g.:

- Trivandrum is the capital of Kerala,
- Sita is the wife of Rama,
- 12 is greater than 10 ,
- $\{a\}$ is the subset of $\{a, b\}$, etc..

Relation \mathbf{R} from \mathbf{A} to \mathbf{B}

A relation R in a set A to a set B is the subset of $A \times B$. If (x, y) is a member of a relation R, then we write $x R y$ and $\operatorname{read} \mathrm{x}$ is the relation R to y .
Domain of \mathbf{R} from \mathbf{A} to \mathbf{B} : The set of all first elements of the ordered pairs in R from A to B is known as domain of R.
Range of \mathbf{R} from \mathbf{A} to \mathbf{B} : The set of all second elements of the ordered pairs in R from A to B is known as range of R.

Co-domain of \mathbf{R} : Set B is known as co-domain.
Consider a relation, $R=\{(x, y): y=x+1, x \in A$ and $y \in B\}$, where $\mathrm{A}=\{0,1,2\}$ and $\mathrm{B}=\{1,2,3,4\}$. Then $R=\{(0,1),(1,2),(2,4)\}$.

Domain of $R=\{0,1,2\}$
Range of $R=\{1,2,4\}$
Co-domain of $\mathrm{R}=$ set $\mathrm{B}=\{1,2,3,4\}$
Note: Range $\subseteq C o-$ domain

Relation R from B to A

A relation R in a set B to a set A is the subset of $B \times A$. If (x, y) is a member of a relation R, then we write $x R y$ and read x is the relation R to y .

Domain of \mathbf{R} from \mathbf{B} to \mathbf{A} : The set of all first elements of the ordered pairs in R from B to A is known as domain of R.
Range of \mathbf{R} from \mathbf{B} to \mathbf{A} : The set of all second elements of the ordered pairs in R from B to A is known as range of R.

Co-domain of \mathbf{R} : Set A is known as co-domain.
Consider a relation, $R=\left\{(x, y): y=x^{2}+1, x \in B\right.$ and $\left.y \in A\right\}$, where $\mathrm{A}=\{1,2,3,5,10\}$ and $\mathrm{B}=\{0,1,2,3\}$. Then $R=\{(0,1),(1,2),(2,5),(3,10)\}$.

Domain of $R=\{0,1,2,3\}$
Range of $R=\{1,2,5,10\}$
Co-domain of $\mathrm{R}=$ set $\mathrm{A}=\{1,2,3,5,10\}$

Representation of a relation:

A relation can be expressed in:
a) Roster Method,
b) Set-builder Method,
c) Arrow diagram and
d) Graphical method.
E.g.: Let $A=\{1,2,3,4\} ; B=\{2,3,4\}$

R is a relation from A to B such that $y=x+2, x \in A$ and $y \in B$.

Roster Method

$R=\{(1,3),(2,4)\}$
Domain $=\{1,2\}$
Range $=\{3,4\}$

Set-builder Method

$$
R=\{(x, y): y=x+2, x \in A \text { and } y \in B\}
$$

Arrow diagram:

Graphical Method

Note: If a set A has melements and B has n elements, then
No. of relations from A to $B=2^{m n}$
No. of relations from B to $\mathrm{A}=2^{n m}=2^{m n}$

FUNCTIONS

Let A and B be any two non-empty sets. A relation from A to B is said to be a function if and only if,
i) if every x element has y element,
ii) the x element cannot be repeated.
or
i) If every x in A has image in B ,
ii) And no element in A has not more than one image in B
E.g.: Let $A=\{0,1,2,3,4\} ; B=\{1,23,5,7,9\}$

Let $R=\{(x, y): y=2 x+1, x \in A, y \in B\}$
Note: If a set A has ' m ' elements and set B has ' n ' elements, then,
i. No. of functions from A to $\mathrm{B}=n(B)^{n(A)}=n^{m}$
ii. No. of functions from B to $\mathrm{A}=n(A)^{n(B)}=m^{n}$
E.g.: If set A has 2 elements and set B has 3 elements, then number of functions from:
i. A to $\mathrm{B}=3^{2}=9$
ii. B to $\mathrm{A}=2^{3}=8$

Domain, Range and co-domain of a function:

If $f: A \rightarrow B$ is a function from A to B , then
i) Domain of $f=\operatorname{set} \mathrm{A}$
ii) Range of $f=$ set of all images of elements of A is known as range.
iii) Codomain of $f=$ set B

Similarly, If $f: B \rightarrow A$ is a function from B to A , then
iv) Domain of $f=$ set B
v) Range of $f=$ set of all images of elements of B is known as range.
vi) Codomain of $f=$ set A

Note: Thus range $\subseteq c o-$ domain .
Equal functions: If two functions f and g are said to be equal, then,
i. domain of $f=$ domain of g
ii. codomain of $f=$ codomain of g

Note: The terms map or mapping are also used to denote function.
If f is a function from A to B , we denote $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ or $A \stackrel{f}{\rightarrow} B$. If f is a function from A to B and $(\mathrm{a}, \mathrm{b}) \in \mathrm{f}$, then $\mathrm{f}(\mathrm{a})=\mathrm{b}$, where ' b ' is called the image of ' a ' under f and ' a ' is called the pre-image of ' b ' under f.

Types of functions:

Real function: A function $f: R \rightarrow R$ is said to be a real function, if its domain is a real constant.
Constant function: A function $f: R \rightarrow R$ is said to be a constant function if $f(x)=c$, where ' c ' is a constant.
Domain: R, Range :c (a constant)
Graph:

Identity function: A function $f: R \rightarrow R$ is said to be an identity function if $f(x)=x$.
Domain: R
Range : R
Graph:

Modulus function: A function $f: R \rightarrow R$ is said to be modulus function, if $f(x)=|x|=\left\{\begin{array}{l}x, \text { when } x \geq 0 \\ -x \text {, when } x<0\end{array}\right.$.
Domain: R
Range : R^{+}(Positive real numbers)

Graph:

Signum Function: A function $f: R \rightarrow R$ is said to be a signum function, if $f(x)=\left\{\begin{array}{c}-1, \text { if } x<0 \\ 0, \text { if } x=0 \\ 1, \text { if } x>0\end{array}\right.$
or $f(x)=\frac{|x|}{x}, x \neq 0$ and 0 for $x=0$ is known as signum function.
Domain: R
Range : $\{-1,0,1\}$, if $x<0, x=0$ and $x>0$
Graph

$$
f(x)=\frac{|x|}{x}, x \neq 0 \text { and } 0 \text { for } x=0
$$

Greatest Integer Function: A function $f: R \rightarrow R$ is said to be a greatest integer function, if $f(x)=[x], x \in R$.
Domain
Range

: R

: Integer.
Graph

Note: The above graph is also known as step graph.

Note:

$[1]$	$0 \leq x<1=0$
$[2]$	$1 \leq x<2=1$
$[0]$	$-1 \leq x<0=-1$
$[1.3]$	$1 \leq x<1.3=1$
$[2.999]$	$2 \leq x<2.999=2$
$[-2.3]$	$-3 \leq x<-2.3=-3$

Polynomial Functions: A function $f: R \rightarrow R$ is said to be a greatest integer function, if $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\ldots+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$.

Domain : R
Range : R
E.g.: $f(x)=x^{3}-2 x+5 ; g(x)=2 x^{2}+3 x-1$, etc..

Graphs of polynomial functions:

Rational Function: A function $f: R \rightarrow R$ is said to be a greatest integer function, if $f(x)=\frac{a x+b}{c x+d}, x \neq-\frac{d}{c}$.
E.g.: $f(x)=\frac{2 x+1}{x-2}, x \neq 2 ; g(x)=\frac{x-5}{x+1}, x \neq-1$, etc..

1. Find the domain of the rational function $f(x)=\frac{2 x-3}{1-x}$:
$f(x)$ is defined, if $1-x=0 \Rightarrow x=1$.
2. Find the domain of the rational function $f(x)=\frac{x^{2}-3 x+5}{x^{2}-5 x+6}$:
$f(x)$ is defined, if $x^{2}-5 x+6=0 \Rightarrow(x-3)(x-2)=0 \Rightarrow x=3$ or $x=2$
\therefore domain $=R-\{2,3\}$
3. Find the domain and range of the function: $f(x)=\sqrt{4-x^{2}}$

Let $f(x)=\sqrt{4-x^{2}}$
i.e, $y=\sqrt{4-x^{2}}$

In order to find the domain, let $4-x^{2} \geq 0$
$4 \geq x^{2} \Rightarrow x^{2} \leq 4 \Rightarrow x \leq \pm 2$
$\Rightarrow x \geq-2$ and $x \leq 2$
\therefore domain of f is $[-2,2]$ or $-2 \leq x \leq 2$
From (1), $y \geq 0$ \qquad

To find the range:

Let $y=\sqrt{4-x^{2}}$
$y^{2}=4-x^{2} \Rightarrow x^{2}=4-y^{2}$
$x=\sqrt{4-y^{2}}$
In order to define x, let $4-y^{2} \geq 0$
$4 \geq y^{2} \Rightarrow y^{2} \leq 4 \Rightarrow y \leq \pm 2$
$\Rightarrow y \geq-2$ and $y \leq 2$ \qquad
From (2) and (3), we have
Range of f is $[0,2]$ or $0 \leq x \leq 2$

Algebra of functions:

Let $f(x)$ and $g(x)$ be any two functions of x, then

1. $f+g=f(x)+g(x)$
2. $f-g=f(x)-g(x)$
3. $f . g=f(x) \times g(x)$
4. $\frac{f}{g}=\frac{f(x)}{g(x)}$, provided $g(x) \neq 0$
E.g.: If $f(x)=x^{2}$ and $g(x)=2 x+1$, then
$f+g=f(x)+g(x)=x^{2}+2 x+1=(x+1)^{2}$
$f-g=f(x)-g(x)=x^{2}-(2 x+1)=x^{2}-2 x-1$
$f . g=f(x) \times g(x)=x^{2}(2 x+1)=2 x^{3}+x^{2}$
$\frac{f}{g}=\frac{f(x)}{g(x)}=\frac{x^{2}}{2 x+1}, x \neq-\frac{1}{2}$

Objective Questions (Try yourself)

1. If $\mathrm{n}(\mathrm{A})=6$ and $\mathrm{n}(\mathrm{B})=5$, then the number of relations on $A \times B$ is
a) 2^{49}
b) 2^{35}
c) 2^{25}
d) 2^{70}
e) $2^{35 \times 35}$
2. Suppose the number of element in set A is p , number of elements B is q and the number of elements in $A \times B$ is 7 then $\mathrm{p}^{2}+\mathrm{q}^{2}$?
a) 42
b) 49
c) 50
d) 51
e) 55
3. $\mathrm{n}(\mathrm{A})=18, \mathrm{n}(\mathrm{B})=15$ and $n(A \cap B)=5$ then $n[(A \times B) \cap(B \times A)]$ is
a) 28
b) 38
c) 35
d) 10
e) 25
4. Let A be the set of first 10 natural numbers and let R be a relation on A defined by $(x, y) \in R \Leftrightarrow x+2 y=10$ then R^{-1}.
a) $\{(2,4),(4,3),(6,2),(8,1)\}$
b) $\{(2,4),(4,3),(2,6),(1,8)\}$
c) $\{(4,2),(3,4),(2,6),(1,8)\}$
d) $\{(4,8),(4,1),(2,6)\}$
e) None of these.
5. If $R=\left\{\left(x, x^{3}\right): x\right.$ is a prime number $\left.<10\right\}$, then $\operatorname{Range}(\mathrm{R})=$
a) $\{125,27,8,341\}$
b) $\{27,353,125,7\}$
c) $\{18,127,125,343\}$
d) $\{343,125,8,27\}$
6. If a set A has 3 elements and set B has 2 elements, then number of relations from B to A is
a) 32
b) 16
c) 64
d) 32
e) None
7. If $R=\{(1,1),(2,3),(3,5),(4,7)\}$ is a function and this is described by the formula that $g(x)=\alpha x+\beta$, then the value of α and β is
a) $\alpha=2 ; \beta=1$
b) $\alpha=2 ; \beta=-1$
c) $\alpha=3 ; \beta=1$
d) $\alpha=2 ; \beta=-1$
e) $\alpha=-2 ; \beta=-1$
8. If a set A has 3 elements and B has 2 elements, then the number of functions from B to A is \qquad
a) 6
b) 9
c) 8
d) 4
e) None of these
9. If $f(x)=|x|+[x]$ then $f\left(-\frac{3}{2}\right)+f\left(\frac{3}{2}\right)$ is
a) 1
b) 2
c) $\frac{1}{2}$
d) $\frac{3}{2}$
e) $\frac{5}{2}$
10. The domain of the function $f(x)=\frac{1}{\sqrt{4-x^{2}}}$ is
a) $-2 \leq x \leq 2$
b) $-2<x<2$
c) $-4 \leq x \leq 4$
d) $-4<x<4$
e) $-\infty \leq x \leq \infty$
11. If $f(x)=\log \left(\frac{1-x}{1+x}\right)$, then the value of $f(a)+f(b)$ is
a) $\log \left(\frac{a-b}{1+a b}\right)$
b) $\log \left(\frac{a+b}{1-a b}\right)$
c) $\log \left(\frac{a+b}{1+a b}\right)$
d) $\log \left(\frac{a-b}{1-a b}\right)$
e) None of these
12. The domain of the function $|x|+|x-1|+|x-2|$ is
a) $R-\{1\}$
b) $R-\{2\}$
c) $R-\{1,2\}$
d) R
e) None of these
13. The range of the function $f(x)=\sin x$ is
a) $\{-1 \leq y \leq 1\}$
b) $\{-1 \leq x \leq 1\}$
c) $-1<y<1$
d) $-1<x<1$
e) None of these
14. Let $f\left(x+\frac{1}{x}\right)=x^{2}+\frac{1}{x^{2}},(x \neq 0)$, then $f(x)$ equals
a) x^{2}
b) $x^{2}-1$
c) $x^{2}+1$
d) $x^{2}-2$
e) None of these
15. The domain of the function $f(x)=\sqrt{x-\sqrt{1-x^{2}}}$ is
a) $\left[-1,-\frac{1}{\sqrt{2}}\right] \cup\left[\frac{1}{\sqrt{2}}, 1\right]$
b) $[-1,1]$
c) $\left[-\infty,-\frac{1}{2}\right] \cup\left[\frac{1}{\sqrt{2}}, \infty\right]$
d) $\left[\frac{1}{\sqrt{2}}, 1\right]$
e) None of these
16. The domain of $\sqrt{x-1}+\sqrt{8-x}$
a) $[1,8)$
b) $(-8,8)$
c) $[1,8]$
d) $(1,8)$
e) None of these
17. The range of the function $y=\frac{x+2}{x^{2}-8 x+4}$ is
a) $\left(-\infty,-\frac{1}{4}\right)$
b) $R-\left\{-\frac{1}{4},-\frac{1}{20}\right\}$
c) $\left[-\frac{1}{20}, \infty\right)$
e) None of these
18. If $f: R \rightarrow R$ be defined by $f(x)=5 x-2$, then $f^{-1}(x)$ is
a) $\frac{x+2}{5}$
b) $\frac{x-2}{5}$
c) $\frac{x}{5}-2$
d) $\frac{x}{5}+2$
e) None of these
19. The graph of the function $y=a x+b$, where a and b are constants is a
a) straight line
b) parabola
c) circle
d) hyperbola
e) None of these
20. Let $f\left(x+\frac{1}{x}\right)=x^{2}+\frac{1}{x^{2}}, x \neq-1$, then $f(x)=$
a) x^{2}
b) $x^{2}-1$
c) $x^{2}-2$
d) $x^{2}+2$
