CHAPTER 2

RELATIONS AND FUNCTIONS

Ordered Pair

A pair of numbers or elements grouped together in a definite order is known as ordered pair. If a and b are any two numbers, then (a, b) is called ordered pair a, b. Here 'a' is known as first element or x element or x coordinate or abscissa and 'b' is known as second element or y element or y co-ordinate or ordinate.

E.g.: $(2,3), (-1,-2), (\frac{1}{2}, \frac{2}{3}), (x, y)$, etc. are ordered pairs.

Note: $\{a,b\} = \{b,a\}$ but $(a,b) \neq (b,a)$ unless a = b

Cartesian product of sets

If A and B be any two non-empty sets, then the Cartesian product or cross product of $A \times B$ is the set of all ordered pairs of elements from A to B and the Cartesian product or cross product of $B \times A$ is the set of all ordered pairs of elements from B to A.

i.e.,
$$A \times B = \{ (x, y) : x \in A, y \in B \}.$$

And
$$B \times A = \{ (x, y) : x \in B, y \in A \}$$

Note: If either A or B is a null set, then $A \times B$ will also be a null set, i.e., $A \times B = \phi$ and $B \times A = \phi$

Note:

- Two ordered pairs are equal, *iff* the corresponding first elements are equal and the second elements are also equal. i.e., if (a,b)=(c,d) ⇒ a = c and b = d
- If there are m elements in A and n elements in B, then there will be 'mn' elements in A × B. i.e., if n(A) = m and n(B) = n, then n(A × B) = mn and n(B × A) = nm=mn elements.
- If A and B are non-empty sets and either A or B is an infinite set, then $A \times B$ is also infinite.
- If A = B, then $A \times B$ becomes $A \times A$ and is denoted by A^2 .
- $A \times A = \{(a, b) : a, b \in A\}$. Here (a, b) is called an ordered doublet.
- $A \times A \times A = \{(a, b, c) : a, b, c \in A\}$. Here (a, b, c) is called an ordered triplet.
- If set A has m elements and set B has n elements, then number of subsets of $A \times B$ or $A \times B = 2^{mn}$.

- The Cartesian product R×R = {(x, y):x, y ∈ R} represents the coordinates of all points in the two dimensional space and the Cartesian product R×R×R = {(x, y, z):x, y, z ∈ R} represents the coordinates of all points in the three dimensional space.
- If a set A has n elements, then $n(A \times A) = n^2$ elements.
- If a set A has n elements, then $n(A \times A \times A) = n^3$ elements.

RELATIONS

Relation means an association of two objects according to some property possessed by them.

E.g.:

- Trivandrum is the capital of Kerala,
- Sita is the wife of Rama,
- 12 is greater than 10,
- {a} is the subset of {a,b}, etc..

Relation R from A to B

A relation R in a set A to a set B is the subset of $A \times B$. If (x,y) is a member of a relation R, then we write xRy and read x is the relation R to y.

Domain of R from A to B: The set of all first elements of the ordered pairs in R from A to B is known as domain of R.

Range of R from A to B: The set of all second elements of the ordered pairs in R from A to B is known as range of R.

Co-domain of R: Set B is known as co-domain.

Consider a relation, $R = \{(x, y) : y = x + 1, x \in A \text{ and } y \in B\}$, where $A = \{0, 1, 2\}$ and $B = \{1, 2, 3, 4\}$. Then

$$R = \left\{ (0,1), (1,2), (2,4) \right\}.$$

Domain of R = $\{0,1,2\}$ Range of R = $\{1,2,4\}$ Co-domain of R = set B = $\{1,2,3,4\}$ **Note:** *Range* \subseteq *Co* –*domain*

Relation R from B to A

A relation R in a set B to a set A is the subset of $B \times A$. If (x,y) is a member of a relation R, then we write xRy and read x is the relation R to y.

Domain of R from B to A: The set of all first elements of the ordered pairs in R from B to A is known as domain of R.

Range of R from B to A: The set of all second elements of the ordered pairs in R from B to A is known as range of R.

Co-domain of R: Set A is known as co-domain.

Consider a relation, $R = \{(x, y) : y = x^2 + 1, x \in B \text{ and } y \in A\}$, where $A = \{1, 2, 3, 5, 10\}$ and $B = \{0, 1, 2, 3\}$. Then

 $R = \{(0,1), (1,2), (2,5), (3,10)\}.$

Domain of $R = \{0, 1, 2, 3\}$

Range of $R = \{1, 2, 5, 10\}$

Co-domain of $R = set A = \{1, 2, 3, 5, 10\}$

Representation of a relation:

A relation can be expressed in:

- a) Roster Method,
- b) Set-builder Method,
- c) Arrow diagram and
- d) Graphical method.

E.g.: Let A={1,2,3,4}; B={2,3,4}

R is a relation from A to B such that $y = x + 2, x \in A$ and $y \in B$.

Roster Method

 $R = \{(1,3), (2,4)\}$

Domain = $\{1,2\}$

Range = $\{3, 4\}$

Set-builder Method

 $R = \{(x, y) : y = x + 2, x \in A \text{ and } y \in B\}$

Arrow diagram:

Graphical Method

No. of relations from A to $B = 2^{mn}$

No. of relations from B to A = $2^{nm} = 2^{mn}$

FUNCTIONS

Let A and B be any two non-empty sets. A relation from A to B is said to be a function if and only if,

- i) if every x element has y element,
- ii) the x element cannot be repeated.

or

- i) If every x in A has image in B,
- ii) And no element in A has not more than one image in B
- E.g.: Let $A = \{0, 1, 2, 3, 4\}$; $B = \{1, 23, 5, 7, 9\}$
- Let $R = \{(x, y) : y = 2x + 1, x \in A, y \in B\}$

Note: If a set A has 'm' elements and set B has 'n' elements, then,

- i. No. of functions from A to B = $n(B)^{n(A)} = n^m$
- ii. No. of functions from B to A = $n(A)^{n(B)} = m^n$

E.g.: If set A has 2 elements and set B has 3 elements, then number of functions from:

i. A to B =
$$3^2 = 9$$

ii. B to A = $2^3 = 8$

age

Domain, Range and co-domain of a function:

- If $f: A \rightarrow B$ is a function from A to B, then
- i) Domain of f = set A
- ii) Range of f = set of all images of elements of A is known as range.
- iii) Codomain of f = set B

Similarly, If $f: B \rightarrow A$ is a function from B to A, then

- iv) Domain of f = set B
- v) Range of f = set of all images of elements of B is known as range.
- vi) Codomain of f = set A

Note: Thus $range \subseteq co - domain$.

Equal functions: If two functions f and g are said to be equal, then,

- i. domain of f = domain of g
- ii. codomain of f = codomain of g

Note: The terms map or mapping are also used to denote function.

If f is a function from A to B, we denote f: A \rightarrow B or A $\stackrel{f}{\rightarrow}$ B. If f is a function from A to B and (a, b) \in f, then f(a) = b, where 'b' is called the image of 'a' under f and 'a' is called the pre-image of 'b' under f.

Types of functions:

Real function: A function $f : R \to R$ is said to be a real function, if its domain is a real constant.

Constant function: A function $f: R \to R$ is said to be a constant function if f(x) = c, where 'c' is a constant.

Domain: R, Range : c (a constant) Graph:

Identity function: A function $f : R \to R$ is said to be an identity function if f(x) = x.

Domain: R

Range : R

Graph:

Modulus function: A function $f: R \to R$ is said to be a modulus function, if $f(x) = |x| = \begin{cases} x, & \text{when } x \ge 0 \\ -x, & \text{when } x < 0 \end{cases}$.

Domain: R

Range : R^+ (Positive real numbers)

Graph:

Signum Function: A function $f: R \to R$ is said to be a signum function, if $f(x) = \begin{cases} -1, & \text{if } x < 0 \\ 0, & \text{if } x = 0 \\ 1, & \text{if } x > 0 \end{cases}$

Page

or $f(x) = \frac{|x|}{x}$, $x \neq 0$ and 0 for x = 0 is known as signum function.

Domain: R

Range : $\{-1, 0, 1\}$, if x < 0, x = 0 and x > 0

Graph

Greatest Integer Function: A function $f: R \to R$ is said to be a greatest integer function, if $f(x) = [x], x \in R$.

Domain	: R
Range	: Integer.

Graph

Note: The above graph is also known as step graph.

Note:

[1]	$0 \le x < 1 = 0$
[2]	$1 \le x < 2 = 1$
[0]	$-1 \le x < 0 = -1$
[1.3]	$1 \le x < 1.3 = 1$
[2.999]	$2 \le x < 2.999 = 2$
[-2.3]	$-3 \le x < -2.3 = -3$

Polynomial Functions: A function $f: R \to R$ is said to be a greatest integer function, if $f(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_3 x^3 + a_2 x^2 + a_1 x + a_0$.

Domain : R Range : R

E.g.: $f(x) = x^3 - 2x + 5$; $g(x) = 2x^2 + 3x - 1$, etc..

Graphs of polynomial functions:

Rational Function: A function $f: R \to R$ is said to be a greatest integer function, if $f(x) = \frac{ax+b}{cx+d}, x \neq -\frac{d}{c}$.

E.g.:
$$f(x) = \frac{2x+1}{x-2}, x \neq 2; g(x) = \frac{x-5}{x+1}, x \neq -1$$
, etc..

- 1. Find the domain of the rational function $f(x) = \frac{2x-3}{1-x}$:
 - f(x) is defined, if $1-x=0 \Longrightarrow x=1$.

2. Find the domain of the rational function
$$f(x) = \frac{x^2 - 3x + 5}{x^2 - 5x + 6}$$
:

- f(x) is defined, if $x^2 5x + 6 = 0 \Rightarrow (x-3)(x-2) = 0 \Rightarrow x = 3$ or x = 2 \therefore domain = $R - \{2, 3\}$
- 3. Find the domain and range of the function: $f(x) = \sqrt{4 x^2}$

Let
$$f(x) = \sqrt{4 - x^2}$$

i.e, $y = \sqrt{4 - x^2}$ (1) In order to find the domain, let $4 - x^2 \ge 0$

 $4 \ge x^2 \Longrightarrow x^2 \le 4 \Longrightarrow x \le \pm 2$ $\Rightarrow x \ge -2 \text{ and } x \le 2$ $\therefore \text{ domain of } f \text{ is } [-2,2] \text{ or } -2 \le x \le 2$ From (1), $y \ge 0$ (2)

To find the range:

Let
$$y = \sqrt{4 - x^2}$$

 $y^2 = 4 - x^2 \Rightarrow x^2 = 4 - y^2$
 $x = \sqrt{4 - y^2}$

In order to define x, let $4 - y^2 \ge 0$

 $4 \ge y^2 \Longrightarrow y^2 \le 4 \Longrightarrow y \le \pm 2$ $\Rightarrow y \ge -2 \text{ and } y \le 2 \qquad(3)$ From (2) and (3), we have Range of f is [0,2] or $0 \le x \le 2$

Algebra of functions:

Let f(x) and g(x) be any two functions of x, then

1.
$$f + g = f(x) + g(x)$$

2.
$$f - g = f(x) - g(x)$$

3.
$$f \cdot g = f(x) \times g(x)$$

4.
$$\frac{f}{g} = \frac{f(x)}{g(x)}, \text{ provided } g(x) \neq 0$$

E.g.: If
$$f(x) = x^2$$
 and $g(x) = 2x+1$, then
 $f + g = f(x) + g(x) = x^2 + 2x + 1 = (x+1)^2$
 $f - g = f(x) - g(x) = x^2 - (2x+1) = x^2 - 2x - 1$
 $f \cdot g = f(x) \times g(x) = x^2 (2x+1) = 2x^3 + x^2$
 $f = f(x) = x^2 - x = 1$

$$\frac{f}{g} = \frac{f(x)}{g(x)} = \frac{x^2}{2x+1}, x \neq -\frac{1}{2}$$

Objective Questions (Try yourself)

1. If
$$n(A) = 6$$
 and $n(B) = 5$, then the number of relations on $A \times B$ is
a) 2^{49} b) 2^{35} c) 2^{25} d) 2^{70} e) $2^{35\times35}$

2. Suppose the number of element in set A is p, number of elements B is q and the number of elements in $A \times B$ is 7 then p^2+q^2 ?

3.
$$n(A) = 18$$
, $n(B) = 15$ and $n(A \cap B) = 5$ then $n[(A \times B) \cap (B \times A)]$ is
a) 28 b) 38 c) 35 d) 10 e) 25

- 4. Let A be the set of first 10 natural numbers and let R be a relation on A defined by $(x, y) \in R \Leftrightarrow x + 2y = 10$ then R^{-1} .
 - a) $\{(2,4),(4,3),(6,2),(8,1)\}$ b) $\{(2,4),(4,3),(2,6),(1,8)\}$ c) $\{(4,2),(3,4),(2,6),(1,8)\}$ d) $\{(4,8),(4,1),(2,6)\}$ e) None of these.

5. If
$$R = \{(x, x^3) : x \text{ is a prime number} < 10\}$$
, then Range(R) =
a) $\{125, 27, 8, 341\}$ b) $\{27, 353, 125, 7\}$

- c) $\{18,127,125,343\}$ d) $\{343,125,8,27\}$
- 6. If a set A has 3 elements and set B has 2 elements, then number of relations from B to A is

a) 32 b) 16 c) 64 d) 32 e) None
7. If
$$R = \{(1,1), (2,3), (3,5), (4,7)\}$$
 is a function and this is described by the formula that $g(x) = \alpha x + \beta$, then the value of α and β is
a) $\alpha = 2; \beta = 1$ b) $\alpha = 2; \beta = -1$ c) $\alpha = 3; \beta = 1$ d) $\alpha = 2; \beta = -1$ e) $\alpha = -2; \beta = -1$
8. If a set A has 3 elements and B has 2 elements, then the number of functions from B to A is
a) 6 b) 9 c) 8 d) 4 e) None of these
9. If $f(x) = |x| + [x]$ then $f\left(-\frac{3}{2}\right) + f\left(\frac{3}{2}\right)$ is
a) 1 b) 2 c) $\frac{1}{2}$ d) $\frac{3}{2}$ e) $\frac{5}{2}$
10. The domain of the function $f(x) = \frac{1}{\sqrt{4 - x^2}}$ is
a) $-2 \le x \le 2$ b) $-2 < x < 2$ c) $-4 \le x \le 4$ d) $-4 < x < 4$ e) $-\infty \le x \le \infty$
11. If $f(x) = \log\left(\frac{1 - x}{1 + x}\right)$, then the value of $f(a) + f(b)$ is
a) $\log\left(\frac{a - b}{1 + ab}\right)$ b) $\log\left(\frac{a + b}{1 - ab}\right)$ c) $\log\left(\frac{a + b}{1 + ab}\right)$ d) $\log\left(\frac{a - b}{1 - ab}\right)$ e) None of these
12. The domain of the function $|x| + |x - 2|$ is
a) $R - (1)$ b) $R - (2)$ c) $R - (1, 2)$ d) R e) None of these
13. The range of the function $f(x) = \sin x$ is
a) $\{-1 \le y \le 1\}$ b) $\{-1 \le x \le 1\}$ c) $-1 < y < 1$ d) $-1 < x < 1$ e) None of these
14. Let $f\left(x + \frac{1}{x}\right) = x^2 + \frac{1}{x^2}, (x \ne 0)$, then $f(x)$ equals
a) x^2 b) $x^2 - 4$ c) $x^2 + 1$ d) $x^2 - 2$ e) None of these
15. The domain of the function $f(x) = \sqrt{x - \sqrt{1 - x^2}}$ is
a) $\left[-1, -\frac{1}{\sqrt{2}}\right] \cup \left[\frac{1}{\sqrt{2}}, 1\right]$ b) $[-1, 1]$ c) $\left[-\infty, -\frac{1}{2}\right] \cup \left[\frac{1}{\sqrt{2}}, \infty\right]$
d) $\left[\frac{1}{\sqrt{2}}, 1\right]$ e) None of these
16. The domain of $\sqrt{x - 1} + \sqrt{8 - x}$
a) $[1, 8)$ b) $(-8, 8)$ c) $[1, 8]$ d) $(1, 8)$ e) None of these
17. The range of the function $y = \frac{x + 2}{x^2 - 8x + 4}$ is
a) $\left(-\infty, -\frac{1}{4}\right)$ b) $R - \left\{-\frac{1}{4}, -\frac{1}{20}\right\}$ c) $\left[-\frac{1}{20}, \infty\right$ e) None of these

rchciit@gmail.com

Page11

18. If $f: R \to R$ be defined by f(x) = 5x - 2, then $f^{-1}(x)$ is a) $\frac{x+2}{5}$ b) $\frac{x-2}{5}$ c) $\frac{x}{5}-2$ d) $\frac{x}{5}+2$ e) None of these 19. The graph of the function y = ax + b, where a and b are constants is a a) straight line b) parabola c) circle d) hyperbola e) None of these 20. Let $f\left(x+\frac{1}{x}\right) = x^2 + \frac{1}{x^2}, x \neq -1$, then f(x) =a) x^2 b) $x^2 - 1$ c) $x^2 - 2$ d) $x^2 + 2$