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Sequences
and series

Assumed knowledge

The content of the modules:

• Algebra review

• Functions I.

Motivation

We encounter sequences at the very beginning of our mathematical experience. The list

of even numbers

2, 4, 6, 8, 10, . . .

and the list of odd numbers

1, 3, 5, 7, 9, . . .

are examples. We can ‘predict’ what the 20th term of each sequence will be just by using

common sense.

Another sequence of great historical interest is the Fibonacci sequence

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . .

in which each term is the sum of the two preceding terms; for example, 55 = 21+34. In

this case it is somewhat more difficult to predict the 20th term, without listing all the

previous ones.

Sequences arise in many areas of mathematics, including finance. For example, we can

invest $1000 at an interest rate of 5% per annum, compounded annually, and list the

sequence consisting of the value of the investment each year:

$1000, $1050, $1102.50, $1157.63, $1215.51, . . .

(rounded to the nearest cent).
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Sequences can be either finite or infinite. For example,

2, 4, 6, 8, 10

is a finite sequence with five terms, whereas

2, 4, 6, 8, 10, . . .

continues without bound and is an infinite sequence. We usually use . . . to denote that

the sequence continues without bound.

For a given infinite sequence, we can ask the questions:

• Can we find a formula for the general term of the sequence?

• Does the sequence have a limit, that is, do the numbers in the sequence get as close

as we like to some number?

For example, we can see intuitively that the terms in the infinite sequence

1,
1

2
,

1

3
,

1

4
,

1

5
, . . .

whose general term is
1

n
, are approaching 0 as n becomes very large.

A finite series arises when we add the terms of a finite sequence. For example,

2+4+6+8+·· ·+20

is the series formed from the sequence 2,4,6,8, . . . ,20.

An infinite series is the ‘formal sum’ of the terms of an infinite sequence. For example,

1+3+5+7+9+·· ·
is the series formed from the sequence of odd numbers. We can spot an interesting pat-

tern in this series. The sum of the first two terms is 4, the sum of the first three terms is 9,

and the sum of the first four terms is 16. So we guess that, in general, the sum of the first

n terms is n2.

For a given infinite series, we can ask the questions:

• Can we find a formula for the sum of the first n terms of the series?

• Does the series have a limit, that is, if we add the first n terms of the series, does this

sum get as close as we like to some number as n becomes larger?

If it exists, this limit is often referred to as the limiting sum of the infinite series. In

this module, we examine limiting sums for one special but commonly occurring type

of series, known as a geometric series.

Sequences and series are very important in mathematics and also have many useful ap-

plications, in areas such as finance, physics and statistics.
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Content

Sequences

The list of positive odd numbers

1, 3, 5, 7, 9, . . .

is an example of a typical infinite sequence. The dots indicate that the sequence con-

tinues forever, with no last term. We will use the symbol an to denote the nth term of a

given sequence. Thus, in this example, a1 = 1, a2 = 3, a3 = 5 and so on; the first term is

a1 = 1, but there is no last term.

The list of positive odd numbers less than 100

1, 3, 5, 7, . . . , 99

is an example of a typical finite sequence. The first term of this sequence is 1 and the last

term is 99. This sequence contains 50 terms.

There are several ways to display a sequence:

• write out the first few terms

• give a formula for the general term

• give a recurrence relation.

Writing out the first few terms is not a good method, since you have to ‘believe’ there is

some clearly defined pattern, and there may be many such patterns present. For exam-

ple, if we simply write

1, 2, 4, . . .

then the next term might be 8 (powers of two), or possibly 7 (Lazy Caterer’s sequence), or

perhaps even 23 if there is some more complicated pattern going on. Hence, if the first

few terms only are given, some rule should also be given as to how to uniquely determine

the next term in the sequence.

A much better way to describe a sequence is to give a formula for the nth term an . This

is also called a formula for the general term. For example,

an = 2n −1

is a formula for the general term in the sequence of odd numbers 1,3,5, . . . . From the

formula, we can, for example, write down the 10th term, since a10 = 2×10−1 = 19.
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In some cases it is not easy, or even possible, to give an explicit formula for an . In such

cases, it may be possible to determine a particular term in the sequence in terms of some

of the preceding terms. This relationship is often referred to as a recurrence. For exam-

ple, the sequence of positive odd numbers may be defined by

a1 = 1 and an+1 = an +2, for n ≥ 1.

The initial term is a1 = 1, and the recurrence tells us that we need to add two to each term

to obtain the next term.

The Fibonacci sequence comprises the numbers

1, 1, 2, 3, 5, 8, 13, 21, 34, . . .

where each term is the sum of the two preceding terms. This can be described by setting

a1 = a2 = 1 and an+2 = an+1 +an , for n ≥ 1.

Exercise 1

Consider the recurrence

a1 = 2 and an = (an−1)2 +1, for n ≥ 2.

Write down the first five terms of this sequence.

The general term of a sequence can sometimes be found by ‘pattern matching’.

Exercise 2

Give a formula for the general term of

a the sequence 2,4,6,8, . . . of even numbers

b the sequence 1,4,9,16, . . . of squares.

In general, however, finding a formula for the general term of a sequence can be difficult.

Consider, for example, the Fibonacci sequence:

1, 1, 2, 3, 5, 8, 13, 21, 34, . . . .

We will discuss in the History and applications section how to show that the nth term of

the Fibonacci sequence is given by

an = 1p
5

((
1+p

5

2

)n

−
(

1−p
5

2

)n
)

.

This is a very surprising result! (It is not even obvious that this formula will give an integer

result for each n.) You might like to check that this formula works for n = 1,2,3.
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Sequences can also be used to approximate real numbers. Thus, for example, the terms

in the sequence

1, 1.4, 1.41, 1.414, 1.4142, . . .

give approximations to the real number
p

2.

Arithmetic sequences

We will limit our attention for the moment to one particular type of sequence, known as

an arithmetic sequence (or arithmetic progression). This is a sequence of the form

a, a +d , a +2d , a +3d , . . .

where each term is obtained from the preceding one by adding a constant, called the

common difference and often represented by the symbol d . Note that d can be positive,

negative or zero.

Thus, the sequence of even numbers

2, 4, 6, 8, 10, . . .

is an arithmetic sequence in which the common difference is d = 2.

It is easy to see that the formula for the nth term of an arithmetic sequence is

an = a + (n −1)d .

Example

Find the formula for the nth term of the arithmetic sequence

1 2, 5, 8, . . .

2 107, 98, 89, . . . .

Solution

1 Here a = 2 and d = 3, so

an = 2+ (n −1)×3 = 3n −1.

2 Here a = 107 and d =−9, so

an = 107+ (n −1)×−9 = 116−9n.
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Exercise 3

Find the nth term of the arithmetic sequence

log5 2, log5 4, log5 8, . . . .

We can also check whether a given number belongs to a given arithmetic sequence.

Example

Does the number 203 belong to the arithmetic sequence 3,7,11, . . . ?

Solution

Here a = 3 and d = 4, so an = 3+ (n −1)×4 = 4n −1. We set 4n −1 = 203 and find that

n = 51. Hence, 203 is the 51st term of the sequence.

Exercise 4

Show that 12 is not a term of the arithmetic sequence 210,197,184, . . . .

Geometric sequences

A geometric sequence has the form

a, ar, ar 2, ar 3, . . .

in which each term is obtained from the preceding one by multiplying by a constant,

called the common ratio and often represented by the symbol r . Note that r can be pos-

itive, negative or zero. The terms in a geometric sequence with negative r will oscillate

between positive and negative.

The doubling sequence

1, 2, 4, 8, 16, 32, 64, . . .

is an example of a geometric sequence with first term 1 and common ratio r = 2, while

3, −6, 12, −24, 48, −96, . . .

is an example of a geometric sequence with first term 3 and common ratio r =−2.

It is easy to see that the formula for the nth term of a geometric sequence is

an = ar n−1.
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Example

Find the formula for the nth term of the geometric sequence

1 2, 6, 18, . . .

2 486, 162, 54, . . . .

Solution

1 Here a = 2 and r = 3, so an = 2×3n−1.

2 Here a = 486 and r = 1
3 , so an = 486× (1

3

)n−1.

Exercise 5

Find the nth term of the geometric sequence

p
6, 2

p
3, 2

p
6, . . . .

We can also check whether a given number belongs to a given geometric sequence.

Example

Does the number 48 belong to the geometric sequence

3072, 1536, 768, . . . ?

Solution

Here a = 3072 and r = 1
2 , so an = 3072× (1

2

)n−1.

We set 3072× (1
2

)n−1 = 48. This gives
(1

2

)n−1 = 1
64 , that is, 2n−1 = 64 = 26, and so n = 7.

Hence, 48 is the 7th term of the sequence.

Example

Does the number 6072 belong to the geometric sequence

3, −6, 12, −24, 48, . . . ?
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Solution

Here a = 3 and r =−2, so an = 3× (−2)n−1.

We set 3× (−2)n−1 = 6072. This gives (−2)n−1 = 2024.

But 2024 is not a power of 2, and so 6072 does not belong to the sequence.

Series

A finite series is the sum of the terms of a finite sequence. Thus, if

a1, a2, . . . , an

is a sequence of n terms, then the corresponding series is

a1 +a2 +·· ·+an .

The number ak is referred to as the kth term of the series.

We often use the sigma notation for series. For example, if we have the series

2+4+6+·· ·+100

in which the kth term is given by 2k, then we can write this series as

50∑
k=1

2k.

Note that the variable k here is a dummy variable. This means that we could also write

the series as

50∑
i=1

2i or
50∑

j=1
2 j .

Exercise 6

By writing out the terms, find the sum

n∑
k=1

( 1

k
− 1

k +1

)
.
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An infinite series is the ‘formal sum’ of the terms of an infinite sequence:

a1 +a2 +a3 +a4 +·· · .

For example, the sequence of odd numbers gives the infinite series 1+3+5+7+·· · .

We can sum an infinite series to a finite number of terms. The sum of the first n terms of

an infinite series is often written as

Sn = a1 +a2 +·· ·+an =
n∑

k=1
ak .

This is sometimes called the nth partial sum of the infinite series.

Given a formula for the sum of the first n terms of a series, we can recover a formula for

the nth term by a simple subtraction, as follows. Starting from

Sn = a1 +a2 +·· ·+an−1 +an

Sn−1 = a1 +a2 +·· ·+an−1,

by subtracting we obtain

Sn −Sn−1 = an .

For example, if the sum of the first n terms of a series is given by Sn = n2, then the nth

term is

an = Sn −Sn−1 = n2 − (n −1)2 = 2n −1.

So the terms form the sequence of odd numbers. Hence, we have found a formula for

the sum of the first n odd numbers:

1+3+5+·· ·+ (2n −1) = n2.

In general, it can be difficult to find a simple formula for the sum of a series to n terms.

For the rest of this section, we restrict our attention to arithmetic and geometric series.

Arithmetic series

An arithmetic series is a series in which the terms form an arithmetic sequence. That is,

each term is obtained from the preceding one by adding a constant.
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The series

1+2+3+·· ·+n

is an arithmetic series with common difference 1. There is an easy way to find the sum

of this series. We write the series forwards and then backwards:

Sn = 1 + 2 + 3 + ·· · + (n −1) + n

Sn = n + (n −1) + (n −2) + ·· · + 2 + 1.

Adding downwards in pairs, we obtain

2Sn = (1+n)+ (2+n −1)+ (3+n −2)+·· ·+ (n −1+2)+ (n +1).

Each of the n terms on the right-hand side simplifies to n +1. Thus 2Sn = n(n +1), and

so we have shown that

1+2+3+·· ·+n = 1

2
n(n +1).

For example,

1+2+3+·· ·+100 = 1

2
×100×101 = 5050.

Legend has it that the famous mathematician Gauss discovered this at the age of nine!

This ‘trick’ works for any arithmetic series, and gives a formula for the sum Sn of the first

n terms of an arithmetic series with first term a1 = a and last term an = `. The formula is

Sn = n

2

(
a +`).

Exercise 7

Use the method of writing the arithmetic series

a + (a +d)+ (a +2d)+·· ·+ (`−d)+`

forwards and backwards to derive the formula Sn = n
2 (a +`) given above.

Since the last term ` can be written as an = a + (n −1)d , where d is the common differ-

ence, we also have

Sn = n

2

(
a +`)

= n

2

(
a +a + (n −1)d

)
= n

2

(
2a + (n −1)d

)
.
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Example

Find the formula for the sum of the first n terms of the arithmetic sequence

1 2, 5, 8, . . .

2 107, 98, 89, . . . .

Solution

1 Here a = 2 and d = 3, so

Sn = n

2

(
4+ (n −1)×3

)= n

2

(
3n +1

)
.

Alternatively, we can find the nth term of the sequence, which is an = 3n−1, and use

the formula

Sn = n

2

(
a +`)= n

2

(
2+ (3n −1)

)= n

2

(
3n +1

)
.

2 Here a = 107 and d =−9, so

Sn = n

2

(
2×107+ (n −1)×−9

)= n

2

(
223−9n

)
.

For both parts of the previous example, we can substitute n = 1 and check this gives the

first term of the series. Note that, since the formula for the sum is a quadratic, checking

the three cases n = 1, n = 2, n = 3 is sufficient to prove that the answer is correct.

Exercise 8

Sum the arithmetic series

log2 3+ log2 9+ log2 27+·· ·

to n terms.

Geometric series

A geometric series is a series in which the terms form a geometric sequence. That is,

each term is obtained from the preceding one by multiplying by a constant.

For example,

2+8+32+128+·· ·

is a geometric series with first term 2 and common ratio 4. The nth term is an = 2×4n−1.
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We can find a formula for the sum of the first n terms of this series, again using a little

trick. We multiply the series by the common ratio 4 and subtract the original, as follows.

Starting from

Sn = 2+8+32+128+·· ·+2×4n−1

4Sn = 8+32+128+·· ·+2×4n−1 +2×4n ,

we subtract to obtain

4Sn −Sn = 2×4n −2,

and so

Sn = 1

3

(
2×4n −2

)= 2(4n −1)

3
.

This ‘trick’ works for any geometric series, and gives a formula for the sum Sn of the first

n terms of a geometric series with first term a and common ratio r . The formula is

Sn = a(r n −1)

r −1
, for r 6= 1.

Note that this can also be written as

Sn = a(1− r n)

1− r
, for r 6= 1.

The second formula is often more convenient to use when r lies between −1 and 1.

In the case when r = 1, the sum of the series is clearly na, since all the terms are identical.

Exercise 9

Use the method of multiplying the geometric series

a +ar +ar 2 +·· ·+ar n−1

by r and subtracting to derive the formula for Sn given above.

Example

Find the formula for the sum of the first n terms of the geometric sequence

1 2, 6, 18, . . .

2 486, 162, 54, . . . .
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Solution

1 Here a = 2 and r = 3, so

Sn = 2(3n −1)

3−1
= 3n −1.

2 Here a = 486 and r = 1
3 , so

Sn = 486
(
1− ( 1

3 )n
)

1− 1
3

= 729
(
1− ( 1

3 )n)
.

For both parts of the previous example, we can put n = 1 and check that we obtain the

first term of the sequence.

Exercise 10

Find the sum to n terms of the geometric series

p
3+6+12

p
3+·· · .

Summary

Arithmetic sequence a, a +d , a +2d , a +3d , . . .

The nth term is an = a + (n −1)d , where a is the first term and

d is the common difference.

Arithmetic series a + (a +d)+ (a +2d)+ (a +3d)+·· ·
The sum of the first n terms is

Sn = n

2

(
2a + (n −1)d

)
,

where a is the first term and d is the common difference. This

can also be written Sn = n
2 (a +`), where ` is the nth term an .

Geometric sequence a, ar, ar 2, ar 3, . . .

The nth term is an = ar n−1, where a is the first term and r is

the common ratio.

Geometric series a +ar +ar 2 +ar 3 +·· ·
The sum of the first n terms is

Sn = a +ar +ar 2 +·· ·+ar n−1 = a(r n −1)

r −1
, for r 6= 1,

where a is the first term and r is the common ratio.



A guide for teachers – Years 11 and 12 • {17}

Means

It is a simple matter to find the average of two numbers. For example, the average of 6

and 10 is 8. When we do this, we are really finding a number x such that 6, x,10 forms

an arithmetic sequence. In general, if the numbers a, x,b form an arithmetic sequence,

then

x −a = b −x, giving x = a +b

2
.

This is the average of a and b, also called the arithmetic mean (AM) of a and b.

Similarly, we can define the geometric mean (GM) of two positive numbers a and b to

be the positive number x such that a, x,b forms a geometric sequence. In this case, we

require

x

a
= b

x
, giving x =

p
ab.

Example

Find the arithmetic and geometric mean of

1 2, 18 2 3, 6.

Solution

1 AM = 2+18

2
= 10, GM =p

2×18 = 6.

2 AM = 3+6

2
= 9

2
, GM =p

3×6 =p
18 = 3

p
2.

Exercise 11

Suppose a and b are positive real numbers. First, take a line segment AB of length a +b

and mark a point X on it such that AX = a (and so X B = b). Next, draw a semicircle,

centred at the midpoint of AB , with AB as diameter. Finally, raise a perpendicular to AB

at X to meet the semicircle at Y .

a Prove that the length X Y is the geometric mean of a and b.

b By noting that the radius of the semicircle equals the arithmetic mean of a and b,

deduce that

a +b

2
≥
p

ab.

That is, the arithmetic mean of a and b is greater than or equal to their geometric

mean.
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Generalisations of these two means and examples of other types of means are discussed

in the Links forward and History and applications sections.

Applications to finance

One of the many applications of sequences and series occurs in financial mathematics.

Here we will briefly discuss compound interest and superannuation.

Compound interest

Compound interest was discussed in the TIMES module Consumer arithmetic (Year 9).

We invest an amount $P at an interest rate r paid at the end of a prescribed interval for

a period of n such intervals. Interest rates are usually quoted as percentages, and so an

interest rate of 3% means that r = 0.03.

Let us here assume the time interval is one year. Hence, after one year, the investment

has the value P + r P = P (1+ r ). After the end of two years, the investment has the value

P (1+ r )+ r P (1+ r ) = P (1+ r )2. We can see from this that, after n years, the investment

will be worth P (1+ r )n .

These amounts form a geometric sequence with common ratio 1+r , and the nth term is

P (1+ r )n .

Example

If $1000 is invested at 4% p.a. compounded yearly, what is the value of the investment

after ten years?

Solution

Here P = 1000, r = 0.04 and n = 10. Thus, after ten years, the investment is worth

1000(1+0.04)10 ≈ $1480.24.

Depreciation is closely related to compound interest. When a company, for example,

buys a car for work-related purposes, it is able to claim the depreciation in the value of

the car over time as a tax deduction.

If the car is initially worth $P and is depreciated at a rate of r per annum, then the value

of the car after one year is P − r P = P (1− r ). After the end of two years, the car has value

P (1− r )− r P (1− r ) = P (1− r )2. We can see from this that, after n years, the car will be

worth P (1− r )n .
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Example

What is the value of a car after ten years, if it is initially worth $30000 and is depreciated

at 6% p.a.?

Solution

Here P = 30000, r = 0.06 and n = 10. Thus, after ten years, the car is worth

30000(1−0.06)10 ≈ $16158.

Superannuation

Superannuation is a way of saving for retirement. Money is regularly invested over a long

period of time and (compound) interest is paid. Suppose I invest in a superannuation

scheme for 30 years which pays 6% per annum. I put $3000 each year into the scheme,

and (for the sake of simplicity) we will suppose that the interest is added yearly.

Thus, the first $3000 will be invested for the full 30 years at 6% per annum. Hence, it will

accrue to $3000×1.0630. The next $3000, deposited at the beginning of the second year,

will be invested for 29 years and so will accrue to $3000×1.0629, and so on. Writing the

amounts from smallest to largest, the total value of my investment after 30 years is

A = 3000×1.06+3000×1.062 +·· ·+3000×1.0630.

This is a geometric series with first term a = 3000×1.06 and common ratio r = 1.06; the

number of terms is n = 30. Using the formula for the sum of a finite geometric series, the

final value of the investment is

A ≈ $251405.

This example illustrates both the value of regular saving and the power of compound

interest. The $90000 invested becomes roughly $251400 over 30 years.

The limiting sum of a geometric series

We have seen that the sum of the first n terms of a geometric series with first term a and

common ratio r is

Sn = a(1− r n)

1− r
, for r 6= 1.
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In the case when r has magnitude less than 1, the term r n approaches 0 as n becomes

very large. So, in this case, the sequence of partial sums S1,S2,S3, . . . has a limit:

lim
n→∞Sn = lim

n→∞
a(1− r n)

1− r
= a

1− r
.

The value of this limit is called the limiting sum of the infinite geometric series. The

values of the partial sums Sn of the series get as close as we like to the limiting sum,

provided n is large enough.

The limiting sum is usually referred to as the sum to infinity of the series and denoted

by S∞. Thus, for a geometric series with common ratio r such that |r | < 1, we have

S∞ = lim
n→∞Sn = a

1− r
.

Example

Find the limiting sum for the geometric series

1 1+ 1

3
+ 1

9
+·· ·

2 8−6+ 9

2
−·· · .

Solution

1 Here a = 1 and r = 1
3 , so the limiting sum exists and is equal to

S∞ = 1

1− 1
3

= 3

2
.

2 Here a = 8 and r =−3
4 , so the limiting sum exists and is equal to

S∞ = 8

1+ 3
4

= 32

7
.

Exercise 12

Explain why the geometric series

1+ 1

1+p
2
+ (

3−2
p

2
)+·· ·

has a limiting sum, and find its value.
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Exercise 13

By writing the recurring decimal 0.12 = 0.121212. . . as

12

102 + 12

104 +·· · ,

express 0.12 as a rational number in simplest form.

In general, the limiting sum of an infinite series a1+a2+a3+·· · is the limit, if it exists, of

the sequence of partial sums S1,S2,S3, . . . , where

S1 = a1

S2 = a1 +a2

S3 = a1 +a2 +a3

and so on. Infinite series are often written in the form
∞∑

n=1
an .

If the series has a limiting sum L, we say that the infinite series converges to L. This can

be written as
∞∑

n=1
an = L or a1 +a2 +a3 +·· · = L.

These two expressions mean that the limit of the sequence of partial sums exists and is

equal to the real number L; they can only be used if the infinite series converges.

Links forward

Use of induction

Some series are easy to sum by spotting patterns. For example, we have seen that the

sum of the first n odd numbers is

1+3+5+·· ·+ (2n −1) = n2.

On the other hand, the formula for the sum of the first n squares,

12 +22 +32 +·· ·+n2 = 1

6
n(n +1)(2n +1),

is hardly obvious and requires a proof. While the Greeks had some very creative proofs of

results such as this, the best approach is to give a proof using mathematical induction.
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Telescoping series

Most series are neither arithmetic nor geometric. Some of these series can be summed

by expressing the summand as a difference.

Example

1 Find the sum

n∑
k=2

2

k2 −1
.

2 Does the infinite series

∞∑
k=2

2

k2 −1

have a limiting sum? If so, what is its value?

Solution

1 We can factor k2 −1 and split the summand into

2

k2 −1
= 1

k −1
− 1

k +1
.

Thus,

n∑
k=2

2

k2 −1
=

n∑
k=2

( 1

k −1
− 1

k +1

)

=
n∑

k=2

1

k −1
−

n∑
k=2

1

k +1
.

If we write out the terms of these two sums, we have

(
1+ 1

2
+ 1

3
+ 1

4
+·· ·+ 1

n −2
+ 1

n −1

)
−

(1

3
+ 1

4
+·· ·+ 1

n −2
+ 1

n −1
+ 1

n
+ 1

n +1

)
.

Most of the terms cancel out (telescope), giving

n∑
k=2

2

k2 −1
= 1+ 1

2
− 1

n
− 1

n +1

= 3

2
− 1

n
− 1

n +1
.

2 Since the terms 1
n and 1

n+1 go to zero as n goes to infinity, the series has a limiting

sum of 3
2 .
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The harmonic series

The harmonic series is

1+ 1

2
+ 1

3
+ 1

4
+ 1

5
+·· · .

There is no simple expression for the sum of the first n terms of this series. Does the

series have a limiting sum? The following argument shows that the answer is no.

We can group the terms of the series as follows:

1+ 1

2
+

(1

3
+ 1

4

)
+

(1

5
+ 1

6
+ 1

7
+ 1

8

)
+

(1

9
+ 1

10
+·· ·+ 1

16

)
+·· · .

Each term is greater than or equal to the last term in its bracket, and so we can write

1+ 1

2
+ 1

3
+ 1

4
+ 1

5
+·· ·

≥ 1+ 1

2
+

(1

4
+ 1

4

)
+

(1

8
+ 1

8
+ 1

8
+ 1

8

)
+

( 1

16
+ 1

16
+·· ·+ 1

16

)
+·· ·

= 1+ 1

2
+ 1

2
+ 1

2
+ 1

2
+·· · ,

which grows without bound. So the harmonic series does not have a limiting sum.

On the other hand, if we square each term and look at the series

1+ 1

22 + 1

32 + 1

42 + 1

52 +·· · ,

then it can be shown (although it is not all that easy) that this series has a limiting sum

of
π2

6
. This result was proven by Euler in the 18th century.

Connection with integration

Integration is used to find the area under a curve. We can approximate the area under

the curve by rectangles, and add up the areas of the rectangles. This gives a finite series.

By taking more rectangles of smaller width, we obtain a series that better approximates

the area. We can define the area under the curve to be the limit of the sequence of sums,

provided the limit exists.
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Consider, for example, the function f (x) = x2 on the interval [0,1]. We will look at the

region R bounded by the curve, the x-axis and the line x = 1.

y

y = x2

x
0

 
 – 1 1

Approximating the area under f (x) = x2 on the interval [0,1].

Divide the interval [0,1] into n equal subintervals of width 1
n . For i = 1,2, . . . ,n, we con-

struct two rectangles Ui and Li on the subinterval
[ i−1

n , i
n

]
, where

• the height of Ui is the maximum value of f (x) on the subinterval, namely
( i

n

)2

• the height of Li is the minimum value of f (x) on the subinterval, namely
( i−1

n

)2.

We can obtain an upper bound for the area of R by finding the total area An of the n

rectangles U1,U2, . . . ,Un :

An = 1

n

[( 1

n

)2 +
( 2

n

)2 +·· ·+
(n

n

)2
]

= 1

n3

(
12 +22 +·· ·+n2)

= 1

n3 × 1

6
n(n +1)(2n +1) (sum of the first n squares)

= 1

3
+ 1

2n
+ 1

6n2 .

This is an upper Riemann sum for f on [0,1].
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Similarly, we can obtain a lower bound for the area of R by finding the total area Bn of the

n rectangles L1,L2, . . . ,Ln :

Bn = 1

n

[( 0

n

)2 +
( 1

n

)2 +·· ·+
(n −1

n

)2
]

= 1

n3

(
02 +12 +·· ·+ (n −1)2)

= 1

n3 × 1

6
(n −1)n(2n −1) (sum of the first n −1 squares)

= 1

3
− 1

2n
+ 1

6n2 .

This is a lower Riemann sum for f on [0,1].

Since Bn ≤ Area R ≤ An , we now have

1

3
− 1

2n
+ 1

6n2 ≤ Area R ≤ 1

3
+ 1

2n
+ 1

6n2 .

By taking the limit as n → ∞, we see that the area of R is 1
3 . We can take this as the

definition of the area of R.

More on means

The notions of arithmetic and geometric means can be extended to more than two num-

bers. For example, if a,b,c are positive numbers, their arithmetic and geometric means

are defined to be

a +b + c

3
and

3
p

abc,

respectively. In general, if a1, a2, . . . , an are n positive real numbers, their arithmetic and

geometric means are

a1 +a2 +·· ·+an

n
and n

p
a1a2 . . . an ,

respectively.

Exercise 14

Suppose that a1, a2, . . . , an is a sequence of positive real numbers and b > 1. Show that

the logarithm (base b) of the geometric mean of these numbers is equal to the arithmetic

mean of the numbers logb a1, logb a2, . . . , logb an .
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The harmonic mean H of two positive numbers a and b is defined by

1

H
= 1

2

(
1

a
+ 1

b

)
.

It is the reciprocal of the average of the reciprocals of a and b. We can rearrange this

equation as

H = 2ab

a +b
.

More generally, the harmonic mean H of positive numbers a1, a2, . . . , an is defined by

1

H
= 1

n

(
1

a1
+ 1

a2
+·· ·+ 1

an

)
.

The AM–GM inequality

Exercise 11 gave a geometric proof that the arithmetic mean of two positive numbers

a and b is greater than or equal to their geometric mean. We can also prove this alge-

braically, as follows.

Since a and b are positive, we can define x =p
a and y =p

b. Then

(x − y)2 ≥ 0 =⇒ x2 + y2 −2x y ≥ 0

=⇒ x2 + y2

2
≥ x y

and so

a +b

2
≥
p

ab.

This is called the AM–GM inequality. Note that we have equality if and only if a = b.

Example

Find the range of the function f (x) = x2 + 1

x2 , for x 6= 0.

Solution

Using the AM–GM inequality,

f (x) = x2 + 1

x2 ≥ 2

√
x2 × 1

x2 = 2.

So the range of f is contained in the interval [2,∞). Note that f (1) = 2 and that f (x) →∞
as x →∞. Since f is continuous, it follows that, for each y ≥ 2, there exists x ≥ 1 with

f (x) = y . Hence, the range of f is the interval [2,∞).
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Exercise 15

a Find the arithmetic, geometric and harmonic means of 3,4,5 and write them in as-

cending order.

b Prove that the harmonic mean of two positive real numbers a and b is less than or

equal to their geometric mean.

The AM–GM inequality can be generalised as follows. If a1, a2, . . . , an are n positive real

numbers, then

a1 +a2 +·· ·+an

n
≥ n

p
a1a2 . . . an .

The next exercise provides a proof of this result.

Exercise 16

a Find the maximum value of the function f (x) = loge x − x, for x > 0. Hence, deduce

that loge x ≤ x −1, for all x > 0.

b Let a1, a2, . . . , an be positive real numbers and define A = a1 +a2 +·· ·+an

n
.

By successively substituting x = ai

A
, for i = 1,2, . . . ,n, into the inequality from part (a)

and summing, show that

loge

( a1a2 . . . an

An

)
≤ 0.

c By exponentiating both sides of the inequality from part (b), derive the generalised

AM–GM inequality.

History and applications

An application to film and video

In modern film and video, one has the power to vary the width and height of the images

being filmed and replayed. The ratio between the width and height of an image is called

its aspect ratio. This ratio is commonly expressed in the form x : y .

The most common aspect ratio used in movie theatres is 2.35 : 1, while the aspect ratio

traditionally used for television and video is 4 : 3 ≈ 1.33 : 1. It was found that the geomet-

ric mean of the numbers 2.35 and 1.33 provides a good compromise between the two

different aspect ratios, distorting or cropping both in some sense equally. The geometric
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mean of 2.35 and 1.33 is approximately 1.77, and the ratio 1.77 : 1 corresponds approx-

imately to 16 : 9. This is the aspect ratio adopted by the Society of Motion Picture and

Television Engineers, and used for high-definition digital television.

Fibonacci numbers

The Fibonacci sequence

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . .

was first discussed in Europe by Leonardo of Pisa (whose nickname was Fibonacci) in the

early 13th century, although the sequence can be traced back to about 200 BCE in Indian

literature. This sequence has produced a large amount of literature and has connections

to many branches of mathematics.

In the Fibonacci sequence, each term is the sum of the two preceding terms. So if an is

the nth term, we can write

a1 = a2 = 1 and an = an−1 +an−2, for n ≥ 3.

This is an example of a second-order linear recurrence relation.

A first-order linear recurrence such as an = kan−1, where k is a constant, is easily seen to

have the solution an = a1 ×kn−1, which is an exponential. By taking A = a1
k , we can write

the solution as an = A kn .

One approach to solving a second-order linear recurrence is to guess an exponential so-

lution of the form an = A kn , where A and k are non-zero constants. Substituting this

into the recurrence for the Fibonacci sequence, we have

A kn = A kn−1 + A kn−2.

Dividing by A kn−2, we see that k satisfies

k2 = k +1,

which has solutions k = 1
2 (1±p

5). Thus, we have found two exponential solutions

an = A1 ×
(

1+p
5

2

)n

and an = A2 ×
(

1−p
5

2

)n

.

The theory of recurrence relations tells us that the general solution of this recurrence is

obtained by summing these two solutions:

an = A1 ×
(

1+p
5

2

)n

+ A2 ×
(

1−p
5

2

)n

.
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We can now use the initial condition a1 = a2 = 1 to find that A1 = 1p
5

and A2 = − 1p
5

.

Finally, we have a formula for the nth Fibonacci number:

an = 1p
5

((
1+p

5

2

)n

−
(

1−p
5

2

)n
)

.

Note that the number 1
2 (1+p

5) that appears here is the golden ratio. One of many inter-

esting facts about the Fibonacci sequence is that the only perfect squares in the sequence

are 1 and 144.

The Greeks

The ancient Greek mathematicians were very interested in ratios. Indeed, much of their

arithmetic was done geometrically using lengths and ratios. They found the link between

ratios and music — hence the origin of the term harmonic mean.

The Greeks defined several different means. Less well known is the Heronian mean

N (a,b) of two positive real numbers a and b, which is the average of the three numbers

a, b and their geometric mean. That is,

N (a,b) = a +b +p
ab

3
.

Notice that, for a,b > 0, we have

a +b +p
ab

3
≥ 2

p
ab +p

ab

3
=
p

ab

and

a +b +p
ab

3
≤ a +b + a+b

2

3
= a +b

2
,

giving

p
ab ≤ N (a,b) ≤ a +b

2
.

That is, the Heronian mean lies in between the geometric and arithmetic means.

Again, we can generalise and define the Heronian mean N of n positive real numbers

a1, a2, . . . , an to be

N = a1 +a2 +·· ·+an + n
p

a1a2 . . . an

n +1
.

The Greeks were also interested in various types of sequences and series. They of course

knew the sequence of square numbers

1, 4, 9, 16, . . .
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but they also introduced the sequence of triangular numbers

1, 3, 6, 10, . . .

given by T1 = 1 and Tn = Tn−1 +n, for n ≥ 2. The general term of this sequence is

Tn = 1+2+·· ·+n = 1

2
n(n +1).

These numbers may be represented graphically, as follows.

T1 = 1 T2 = 3 T3 = 6 T4 = 10

The first four triangular numbers.

The Greeks used geometric techniques to show that

12 +22 +32 +·· ·+n2 = 1

6
n(n +1)(2n +1)

and

13 +23 +33 +·· ·+n3 = 1

4
n2(n +1)2 = (1+2+3+·· ·+n)2.

Answers to exercises

Exercise 1

2, 5, 26, 677, 458330.

Exercise 2

a an = 2n

b an = n2.

Exercise 3

The sequence simplifies to

log5 2, 2log5 2, 3log5 2, . . .

and so the general term is an = n log5 2.
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Exercise 4

Here a = 210 and d =−13, so the general term is given by an = 210−13(n−1) = 223−13n.

The equation 223−13n = 12 has solution n = 211
13 , which is not positive integer. Hence 12

is not a term in the sequence.

Exercise 5

We have a =p
6 and r = 2

p
3p

6
=p

2. Thus an =p
6(
p

2)n−1 =p
3(
p

2)n .

Exercise 6
n∑

k=1

( 1

k
− 1

k +1

)
=

(
1− 1

2

)
+

(1

2
− 1

3

)
+

(1

3
− 1

4

)
+·· ·+

( 1

n
− 1

n +1

)

= 1− 1

n +1
= n

n +1
.

Exercise 7

Writing the series forwards and backwards, we have

Sn = a + (a +d) + (a +2d) + ·· · + (`−d) + `

Sn = ` + (`−d) + (`−2d) + ·· · + (a +d) + a.

Adding in pairs gives

2Sn = (a +`)+ (a +`)+·· ·+ (a +`) = n(a +`).

Hence, Sn = n
2 (a +`).

Exercise 8

Here a = log2 3 and d = log2 3, so

Sn = n

2

(
2log2 3+ (n −1)log2 3

)= 1

2
n(n +1)log2 3.

Exercise 9

We have

Sn = a +ar +ar 2 +·· ·+ar n−1

r Sn = ar +ar 2 +·· ·+ar n−1 +ar n .

Subtracting gives

r Sn −Sn = ar n −a =⇒ Sn(r −1) = a(r n −1)

=⇒ Sn = a(r n −1)

r −1
, provided r 6= 1.
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Exercise 10

We have a =p
3 and r = 6p

3
= 2

p
3. Hence, Sn =

p
3
(
(2
p

3)n −1
)

2
p

3−1
.

Exercise 11

a The triangles AX Y and Y X B are similar. (They have equal angles, as ∠AY B = 90◦.)

Thus

a

X Y
= X Y

b
=⇒ X Y =

p
ab.

Hence, the length X Y is the geometric mean of a and b.

b Let C be the midpoint of AB . Let D be the point where the perpendicular to AB at

C cuts the semicircle. Then C D is the radius of the semicircle, and so C D = 1
2 (a +b).

Clearly, C D ≥ X Y , and therefore 1
2 (a +b) ≥p

ab.

Exercise 12

The common ratio is

r = 1

1+p
2
=
p

2−1,

and so −1 < r < 1. Hence, the geometric series has a limiting sum, given by

S∞ = 1

1− (
p

2−1)
= 1

2−p
2
= 1+

p
2

2
.

Exercise 13

We can write the decimal 0.12 as

0.12 = 0.12121212. . . = 12

102 + 12

104 + 12

106 +·· · ,

which is a geometric series with a = 12
102 and r = 1

102 . The limiting sum is

0.12 =
( 12

102

)
×

( 1

1− 1
102

)
= 4

33
.

Exercise 14

The geometric mean of a1, a2, . . . , an is G = n
p

a1a2 . . . an . So

logb G = logb

(
(a1a2 . . . an)

1
n
)

= 1

n
logb(a1a2 . . . an)

= 1

n

(
logb a1 + logb a2 +·· ·+ logb an

)
,

which is the arithmetic mean of logb a1, logb a2, . . . , logb an .
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Exercise 15

a The arithmetic mean is AM = 4 and the geometric mean is GM = 3
p

60 ≈ 3.91. The

harmonic mean H M satisfies

1

H M
= 1

3

(1

3
+ 1

4
+ 1

5

)
= 47

180
=⇒ H M = 180

47
≈ 3.83.

So in this case H M ≤GM ≤ AM .

b Using the AM–GM inequality, we have a +b ≥ 2
p

ab, and so

H M = 2ab

a +b
≤ 2ab

2
p

ab
=
p

ab =GM .

Exercise 16

a Let f (x) = loge x − x, for x > 0. Then f ′(x) = 1
x −1, so the only stationary point is at

x = 1. We could use a sign diagram to check that f (x) has a maximum at x = 1. The

maximum is f (1) =−1. So, for all x > 0, we have loge x −x ≤−1, giving loge x ≤ x −1.

b Define A = 1
n (a1 + a2 + ·· · + an). Substituting x = a1

A , x = a2
A , . . . , x = an

A into the

inequality loge x ≤ x −1 from part (a) gives

loge

( a1

A

)
≤ a1

A
−1

loge

( a2

A

)
≤ a2

A
−1

...

loge

( an

A

)
≤ an

A
−1.

Adding, we have

loge

( a1

A

)
+ loge

( a2

A

)
+·· ·+ loge

( an

A

)
≤ 1

A

(
a1 +a2 +·· ·+an

)−n.

Hence,

loge

( a1a2 . . . an

An

)
≤ n −n = 0.

c Exponentiating both sides of the inequality above gives

a1a2 . . . an

An ≤ 1 =⇒ a1a2 . . . an ≤ An ,

from which we have

(a1a2 . . . an)
1
n ≤ A = a1 +a2 +·· ·+an

n
,

which is the desired result.
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