#418183

Topic: Introduction

A point is on the χ -axis. What are its γ -coordinate and χ -coordinates?

Solution

If a point is on the $_{X}$ -axis then only $_{X}$ -coordinate will have non-zero constant value and other coordinates will be zero.

Hence, y-coordinates and z-coordinates are zero.

#418185

Topic: Introduction

If a point is in the χ_{Z} -plane. What can you say about its y-coordinate?

Solution

If a point is in the χ_Z plane then its γ -coordinate is zero

#418190

Topic: Introduction

Name the octants in which the following points lie:

$$(1, 2, 3), (4, -2, 3)(4, -2, -5), (4, 2, -5), (-4, 2, -5), (-4, 2, 5), (-3, -1, 6), (2, -4, -7)$$

Solution

The χ -coordinate γ -coordinate and χ -coordinate of point (1, 2, 3) are all positive.

Therefore this point lies in octant I

The x-coordinate y-coordinate and z-coordinate of point (4, -2, 3) are positive

negative and positive respectively. Therefore this point lies in octant $\ensuremath{\mathsf{IV}}$

The χ -coordinate χ -coordinate and χ -coordinate of point (4, -2, -5) are positive

negative and negative respectively. Therefore this point lies in octant $\mbox{\em VIII}$

positive and negative respectively. Therefore this point lies in octant \boldsymbol{V}

The χ -coordinate, γ -coordinate and γ -coordinate of point (– 4, 2, – 5) are negative

positive, and negative respectively. Therefore this point lies in octant VI

The χ -coordinate, γ -coordinate and χ -coordinate of point (– 4, 2, 5) are negative

positive and positive respectively. Therefore this point lies in octant II

The x-coordinate y-coordinate and z-coordinate of point (-3, -1, 6) are negative

negative and positive respectively. Therefore this point lies in octant $\ensuremath{\mathsf{III}}$

The x-coordinate, y-coordinate and z-coordinate of point (2, -4, -7) are positive

negative and negative respectively. Therefore this point lies in octant VIII

#418193

Topic: Introduction

Fill in the blanks:

- (i) The x-axis and y-axis taken together determine a plane known as_____
- (ii) The coordinates of points in the XY-plane are of the form_____
- (iii) Coordinate planes divide the space into_____ octants

Solution

- (i) The χ -axis and γ -axis taken together determine a plane known as $\chi\gamma$ -plane
- (ii) The coordinates of points in the χ_{Y} -plane are of the form (x, y), where x is x-coordinate and y is y-coordinate
- (iii) Coordinate planes divide the space into 8 octants.

#418205

Topic: Distance Between Two Points

(ii)(
$$-3$$
, 7 , 2)and ((2 , 4 , -1)

(iii) (
$$-1$$
, 3, -4) and (1, -3 , 4)

Solution

6/4/2018

The distance between points $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$ is given by

$$PQ = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

(i) Distance between points (2, 3, 5) and (4, 3, 1)

$$= \sqrt{(4-2)^2 + (3-3)^2 + (1-5)^2}$$

$$= \sqrt{(2)^2 + (0)^2 + (-4)^2}$$

$$= \sqrt{4 + 16}$$

$$=\sqrt{20}$$

$$= 2\sqrt{5}$$

(ii) Distance between points (-3, 7, 2) and (2, 4, -1)

$$= \sqrt{(2+3)^2 + (4-7)^2 + (-1-2)^2}$$

$$=\sqrt{(5)^2+(-3)^2+(-3)^2}$$

$$=\sqrt{25+9+9}$$

$$=\sqrt{43}$$

(iii) Distance between points (-1, 3, -4) and (1, -3, 4)

$$= \sqrt{(1+1)^2 + (-3-3)^2 + (4+4)^2}$$

$$=\sqrt{(2)^2+(-6)^2+(8)^2}$$

$$=\sqrt{4+36+64}=\sqrt{104}$$

$$= 2\sqrt{26}$$

(iv) Distance between points (2, -1, 3) and (-2, 1, 3)

$$= \sqrt{(-2-2)^2 + (1+1)^2 + (3-3)^2}$$

$$=\sqrt{(-4)^2+(2)^2+(0)^2}$$

$$= \sqrt{16 + 4}$$

$$=\sqrt{20}$$

$$= 2\sqrt{5}$$

#418298

Topic: Distance Between Two Points

Verify the following

(i) (0, 7, $\,$ – 10), (1, 6, $\,$ – 6) and (4, 9, $\,$ – 6) are the vertices of an isosceles triangle

(ii) (0, 7, 10), (– 1, 6, 6) and (– 4, 9, 6) are the vertices of a right angled triangle

(iii) (-1, 2, 1), (1, -2, 5), (4, -7, 8) and (2, -3, 4) are the vertices of a parallelogram

Solution

(i) Let point(0, 7, -10), (1, 6, -6) and (4, 9, -6) be denoted by A, B and C respectively

$$AB = \sqrt{(1-0)^2 + (6-7)^2 + (-6+10)^2}$$

$$= \sqrt{(1)^2 + (-1)^2 + (4)^2}$$

$$=\sqrt{1+1+16}$$

$$=\sqrt{18}$$

$$\Rightarrow AB = 3\sqrt{2}$$

$$BC = \sqrt{(4-1)^2 + (9-6)^2 + (-6+6)^2}$$

$$=\sqrt{(3)^2+(3)^2}$$

$$=\sqrt{9+9}=\sqrt{18}$$

$$\Rightarrow BC = 3\sqrt{2}$$

$$CA = \sqrt{(0-4)^2 + (7-9)^2 + (-10+6)^2}$$

$$=\sqrt{(-4)^2+(-2)^2+(-4)^2}$$

$$=\sqrt{16+4+16}=\sqrt{36}=6$$

Here $AB = BC \neq CA$

Thus the given points are the vertices of an isosceles triangle

(ii) Let (0, 7, 10), (– 1, 6, 6) and (– 4, 9, 6) be denoted by \emph{A} , \emph{B} and \emph{C} respectively

$$AB = \sqrt{(-1-0)^2 + (6-7)^2 + (6-10)^2}$$

$$=\sqrt{(-1)^2+(-1)^2+(-4)^2}$$

$$=\sqrt{1+1+16}=\sqrt{18}$$

$$= 3\sqrt{2}$$

$$BC = \sqrt{(-4+1)^2 + (9-6)^2 + (6-6)^2}$$

$$=\sqrt{(-3)^2+(3)^2+(0)^2}$$

$$=\sqrt{9+9}=\sqrt{18}$$

$$= 3\sqrt{2}$$

$$CA = \sqrt{(0+4)^2 + (7-9)^2 + (10-6)^2}$$

$$=\sqrt{(4)^2+(-2)^2+(4)^2}$$

$$=\sqrt{16+4+16}$$

$$=\sqrt{36}$$

= 6

Now
$$AB^2 + BC^2 = (3\sqrt{2})^2 + (3\sqrt{2})^2 = 18 + 18 = 36 = AC^2$$

Therefore by pythagoras theorem ABC is a right triangle

Hence the given points are the vertices of a right-angled triangle

(iii) Let (-1, 2, 1), (1, -2, 5), (4, -7, 8) and (2, -3, 4) be denoted by A, B, C and D respectively

$$AB = \sqrt{(1+1)^2 + (-2-2)^2 + (5-1)^2}$$

$$=\sqrt{4+16+16}$$

$$AB = \sqrt{36}$$

$$BC = \sqrt{(4-1)^2 + (-7+2)^2 + (8-5)^2}$$

$$=\sqrt{9+25+9}=\sqrt{43}$$

$$CD = \sqrt{(2-4)^2 + (-3+7)^2 + (4-8)^2}$$

$$=\sqrt{4+16+16}$$

$$DA = \sqrt{(-1-2)^2 + (2+3)^2 + (1-4)^2}$$

$$DA = \sqrt{9 + 25 + 9} = \sqrt{43}$$

Here
$$AB = CD = 6$$
, $BC = AD = \sqrt{43}$

Hence the opposite sides of quadrilateral ABCD whose vertices are taken in order are equal

Therefore ABCD is a parallelogram

Hence the given points are the vertices of a parallelogram

6/4/2018 **#418308**

Topic: Distance Between Two Points

Find the equation of the set of points which are equidistant from the points (1, 2, 3) and (3, 2, -1)

Solution

Let P(x, y, z) be the point that is equidistant from points A(1, 2, 3) and B(3, 2, -1).

i.e.
$$PA = PB$$

$$\Rightarrow PA^2 = PB^2$$

$$\Rightarrow (x-1)^2 + (y-2)^2 + (z-3)^2 = (x-3)^2 + (y-2)^2 + (z+1)^2$$

$$\Rightarrow x^2 - 2x + 1 + y^2 - 4y + 4 + z^2 - 6z + 9 = x^2 - 6x + 9 + y^2 - 4y + 4 + z^2 + 2z + 1$$

$$\Rightarrow$$
 -2x-6z+14 = -6x+2z+14

$$\Rightarrow$$
 $-2x-6z+6x-2z=0$

$$\Rightarrow 4x - 8z = 0$$

$$\Rightarrow x - 2z = 0$$

Thus the required equation is x - 2z = 0.

#418320

Topic: Distance Between Two Points

Find the equation of the set of points P, the sum of whose distances from A(4, 0, 0) and B(-4, 0, 0) is equal to 10

Solution

Let the coordinates of P be (x, y, z).

The coordinates of points A and B are (4, 0, 0) and (– 4, 0, 0) respectively.

It is given that PA + PB = 10

$$\Rightarrow \sqrt{(x-4)^2 + y^2 + z^2} + \sqrt{(x+4)^2 + y^2 + z^2} = 10$$

$$\Rightarrow \sqrt{(x-4)^2 + y^2 + z^2} = 10 - \sqrt{(x+4)^2 + y^2 + z^2}$$

On squaring both sides, we obtain

$$\Rightarrow (x-4)^2 + y^2 + z^2 = 100 + (x+4)^2 + y^2 + z^2 - 20\sqrt{(x+4)^2 + y^2 + z^2}$$

$$\Rightarrow x^2 - 8x + 16 + y^2 + z^2 = 100 - 20\sqrt{x^2 + 8x + 16 + y^2 + z^2} + x^2 + 8x + 16 + y^2 + z^2$$

$$\Rightarrow 20\sqrt{x^2 + 8x + 16 + y^2 + z^2} = 100 + 16x$$

$$\Rightarrow 5\sqrt{x^2 + 8x + 16 + y^2 + z^2} = (25 + 4x)$$

On squaring both sides again, we obtain

$$25(x^2 + 8x + 16 + y^2 + z^2) = 625 + 16x^2 + 200x$$

$$\Rightarrow 25x^2 + 200x + 400 + 25y^2 + 25z^2 = 625 + 16x^2 + 200x$$

$$\Rightarrow 9x^2 + 25y^2 + 25z^2 - 225 = 0$$

Thus the required equation is $9\chi^2 + 25\chi^2 + 25\chi^2 - 225 = 0$.

#418328

Topic: Section Formula

Find the coordinates of the point which divides the line segment joining the points (-2, 3, 5) and (1, -4, 6) in the ratio

(i) 2:3 internally

(ii) 2:3 externally

Solution

(i) The coordinates of point R that divides the line segment joining points $P(X_1, Y_1, Z_1)$ and $Q(X_2, Y_2, Z_2)$ internally in the ratio m: n are

$$\left(\frac{m^{X_{2}+nX_{1}}}{m+n}, \frac{m^{Y_{2}+nY_{1}}}{m+n}, \frac{m^{Z_{2}+nZ_{1}}}{m+n}\right)$$

Let R(x, y, z) be the point that divides the line segment joining points (-2, 3, 5) and (1, -4, 6) internally in the ratio 2:3

$$x = \frac{2(1) + 3(-2)}{2+3}$$
, $y = \frac{2(-4) + 3(3)}{2+3}$ and $z = \frac{2(6) + 3(5)}{2+3}$

i.e.,
$$x = \frac{-4}{5}$$
, $y = \frac{1}{5}$ and $z = \frac{27}{5}$

Thus the coordinates of the required point are $\left(-\frac{4}{5}, \frac{1}{5}, \frac{27}{5}\right)$

(ii) The coordinates of point R that divides the line segment joining points $P(X_1, Y_1, Z_1)$ and $Q(X_2, Y_2, Z_2)$ externally in the ratio m: n are

$$\sqrt{\frac{m^{X}_{2}-n^{X}_{1}}{m-n}}, \frac{m^{Y}_{2}-n^{Y}_{1}}{m-n} \frac{m^{Z}_{2}-n^{Z}_{1}}{m-n}$$

Let R(x, y, z) be the point that divides the line segment joining points (-2, 3, 5) and (1, -4, 6) externally in the ratio 2:3

$$x = \frac{2(1) - 3(-2)}{2 - 3}$$
, $y = \frac{2(-4) - 3(3)}{2 - 3}$ and $z = \frac{2(6) - 3(5)}{2 - 3}$

i.e.,
$$x = -8$$
, $y = 17$ and $z = 3$

Thus the coordinates of the required point are (- 8, 17, 3)

#418342

Topic: Section Formula

Given that P(3, 2, -4), Q(5, 4, -6) and R(9, 8, -10) are collinear. Find the ratio in which Q divides PR.

Solution

Given points P(3, 2, -4), Q(5, 4, -6) and R(9, 8, -10)

Let Q divides PR in the ratio k: 1.

So, by section formula, coordinates of Q are $(\frac{k(9)+1(3)}{k+1}, \frac{k(8)+1(2)}{k+1}, \frac{k(-10)+1(-4)}{k+1})$

$$=(\frac{9k+3}{k+1},\frac{8k+2}{k+1},\frac{-10k+4}{k+1})$$

But the given coordinates of Q are (5, 4, -6).

On comparing
$$\frac{9k+3}{k+1} = 5$$

$$\Rightarrow 9k + 3 = 5k + 5$$

$$\Rightarrow k = \frac{1}{2}$$

So, Q divides PQ in the ratio 1:2.

Let point Q(5, 4, -6) divides the line segment joining points P(3, 2, -4) and P(9, 8, -10) in the ration K:1.

Thus using section formula,

$$(5, 4, -6) = \left(\frac{k(9) + 3}{k + 1}, \frac{k(8) + 2}{k + 1}, \frac{k(-10) - 4}{k + 1}\right)$$

$$\Rightarrow \frac{9k + 3}{k + 1} = 5$$

$$\Rightarrow 9k + 3 = 5k + 5$$

$$\Rightarrow 4k = 2$$

$$\Rightarrow k = \frac{2}{4} = \frac{1}{2}$$

Hence point Q divides PR in the ratio 1: 2.

#418344

Topic: Section Formula

Find the ratio in which the YZ-plane divides the line segment formed by joining the points (-2, 4, 7) and (3, -5, 8)

Solution

Let the YZ plane divide the line segment joining points (-2, 4, 7) and (3, -5, 8) in the ratio k:1.

Using section formula, the coordinates of point of intersection are given by,

$$\left(\frac{k(3)-2}{k+1}, \frac{k(-5)+4}{k+1}, \frac{k(8)+7}{k+1}\right)$$

On the γ_Z plane, the χ -coordinate of any point is zero.

$$\frac{3k-2}{k+1}=0$$

$$\Rightarrow 3k - 2 = 0$$

$$\Rightarrow k = \frac{2}{3}$$

Thus the yz plane divides the line segment formed by joining the given points in the ratio 2:3.

#418360

Topic: Section Formula

Using section formula show that the points A(2, -3, 4), B(-1, 2, 1) and $C(0, \frac{1}{3}, 2)$ are collinear

Solution

The given points are A(2, -3, 4), B(-1, 2, 1) and $C(0, \frac{1}{3}, 2)$

Let P be a point that divides AB in the ratio k:1.

Using section formula, the coordinates of P are given by,

$$\left(\frac{k(-1)+2}{k+1}, \frac{k(2)-3}{k+1}, \frac{k(1)+4}{k+1}\right)$$

Now, we will find the value of k at which point P coincides with point C.

$$\Rightarrow \frac{-k+2}{k+1} = 0$$
, we get $k=2$

For k = 2, the coordinates of point P are $\left(0, \frac{1}{3}, 2\right)$,

i.e., $Q^{(0,\frac{1}{3},2)}$ is a point that divides AB externally in the ratio 2:1 and is the same as point P

Hence, points A, B and C are collinear.

#418361

Topic: Section Formula

Find the coordinates of the points which trisect the line segment joining the points P(4, 2, -6) and Q(10, -16, 6)

Solution

Given coordinates of P as (4, 2, -6) and Q as (10, -16, 6)

Let R and S be the points of trisection of line segment PQ.

Then R divides PQ in the ratio 1:2 and S is the mid-point of RQ.

Let the coordinates of R be (x, y, z)

By using section formula,

$$x = \frac{1(10) + 2(4)}{1 + 2}, y = \frac{1(-16) + 2(2)}{1 + 2}, z = \frac{1(6) + 2(-6)}{1 + 2}$$

$$\Rightarrow x = \frac{18}{3}, y = \frac{-12}{3}, z = \frac{-6}{3}$$

$$\Rightarrow x = 6, y = -4, z = -2$$

So, the coordinates of R are (6, -4, -2).

Now, since s is the mid-point of RQ.

Topic: Distance Between Two Points

Find the lengths of the medians of the triangle with vertices A(0, 0, 6), B(0, 4, 0) and (6, 0, 0)

Solution

Let AD, BE and CF be the medians of the given $\triangle ABC$.

Since AD is the median, D is the mid-point of BC.

:. coordinates of point
$$D = \left(\frac{0+6}{2}, \frac{4+0}{2}, \frac{0+0}{2}\right) = (3, 2, 0)$$

$$AD = \sqrt{(0-3)^2 + (0-2)^2 + (6-0)^2} = \sqrt{9+4+36} = \sqrt{49} = 7$$

Since BE is the median, E is the mid-point of AC

.. coordinates of point
$$E = \left(\frac{0+6}{2}, \frac{0+0}{2}, \frac{6+0}{2}\right) = (3, 0, 3)$$

$$BE = \sqrt{(3-0)^2 + (0-4)^2 + (3-0)^2} = \sqrt{9+16+9} = \sqrt{34}$$

Since *CF* is the median, *F* is the mid point of *AB*.

:. coordinates of point
$$F = \left(\frac{0+0}{2}, \frac{0+4}{2}, \frac{6+0}{2}\right) = (0, 2, 3)$$

Length of
$$CF = \sqrt{(6-0)^2 + (0-2)^2 + (0-3)^2} = \sqrt{36+4+9} = \sqrt{49} = 7$$

Thus the lengths of the medians of $\triangle ABC$ are 7, $\sqrt{34}$ and 7 units.

#418434

Topic: Section Formula

If the origin is the centroid of the triangle PQR with vertices P(2a, 2, 6), Q(-4, 3b, -10) and R(8, 14, 2c), then find the values of a, b and c

Solution

The coordinates of the centroid of $\triangle PQR$

$$= \left(\frac{2a - 4 - 8}{3}, \frac{2 + 3b + 14}{3}, \frac{6 - 10 + 2c}{3} \right) = \left(\frac{2a + 4}{3}, \frac{3b + 16}{3}, \frac{2c - 4}{3} \right)$$

It is given that origin is the centroid of $\triangle PQR$

$$\therefore (0,0,0) = \left(\frac{2a+4}{3}, \frac{3b+16}{3}, \frac{2c-4}{3}\right)$$

$$\Rightarrow \frac{2a+4}{3} = 0, \frac{3b+16}{3} = 0 \text{ and } \frac{2c-4}{3} = 0$$

$$\Rightarrow a = -2, b = -\frac{16}{3} \text{ and } c = 2$$

#418443

Topic: Distance Between Two Points

Find the coordinates of a point on y-axis which are at a distance of $5\sqrt{2}$ from the point P(3, -2, 5)

Solution

Let A(0, b, 0) be the point on the y-axis at a distance of $5\sqrt{2}$ from point P(3, -2, 5).

We have given, $\Delta P = 5\sqrt{2}$

$$\Rightarrow AP^2 = 50$$

$$\Rightarrow$$
 $(3-0)^2 + (-2-B)^2 + (5-0)^2 = 50$

$$\Rightarrow$$
 9 + 4 + b^2 + 4 b + 25 = 50

$$\Rightarrow b^2 + 4b - 12 = 0$$

$$\Rightarrow b^2 + 6b - 2b - 12 = 0$$

$$\Rightarrow (b+6)(b-2)=0$$

$$\Rightarrow b = -6, 2$$

Thus, the coordinates of the required points are (0, 2, 0) and (0, -6, 0)

#418449

6/4/2018

Topic: Section Formula

A point R with χ -coordinate 4 lies on the line segment joining the points R(2, -3, 4) and Q(8, 0, 10). Find the coordinates of the point R.

Solution

The coordinates of points P and Q are given as P(2, -3, 4) and (8, 0, 10)

Let R divide line segment PQ in the ratio k:1

Hence by section formula, the coordinates of point R are given by,

$$\left(\frac{k(8)+2}{k+1}, \frac{k(0)-3}{k+1}, \frac{k(10)+4}{k+1}\right) = \left(\frac{8k+2}{k+1}, \frac{-3}{k+1}, \frac{10k+4}{k+1}\right)$$

It is given that the χ -coordinate of point R is 4.

$$\therefore \frac{8k+2}{k+1} = 4$$

$$\Rightarrow$$
 8 k + 2 = 4 k + 4

$$\Rightarrow 4k = 2$$

$$\Rightarrow k = \frac{1}{2}$$

Therefore, the coordinates of point
$$R$$
 are $\left(4, \frac{-3}{\frac{1}{2}+1}, \frac{10^{\left(\frac{1}{2}\right)}+4}{\frac{1}{2}+1}\right) = (4, -2, 6)$

#418457

Topic: Distance Between Two Points

If A and B be the points (3, 4, 5) and (-1, 3, -7) respectively. Find the equation of the set of points P such that $P_A^2 + P_B^2 = K^2$, where K is a constant

Solution

Given coordinates of points A and B are (3, 4, 5) and (-1, 3, -7) respectively.

Let the coordinates of point P be (x, y, z).

Given,
$$PA^2 + PB^2 = K^2$$

$$\Rightarrow (x-3)^2 + (y-4)^2 + (z-5)^2 + (x+1)^2 + (y-3)^2 + (z+7)^2 = \kappa^2$$

$$x^2 - 6x + 9 + y^2 - 8y + 16 + z^2 - 10z + 25 + x^2 + 2x + 1 + y^2 - 6y + 9 + z^2 + 14z + 49 = K^2$$

$$\Rightarrow 2\chi^2 + 2y^2 + 2z^2 - 4x - 14y + 4z + 109 = \kappa^2$$

$$\Rightarrow 2x^2 + y^2 + z^2 - 2x - 7y + 2z = \kappa^2 - 109$$

$$\Rightarrow x^2 + y^2 + z^2 - 2x - 7y + 2z = \frac{\kappa^2 - 109}{2}$$

which is the required equation.

#418890

Topic: Introduction

Write the equations for the x-and y-axes.

Solution

The y-coordinate of every point on x-axis is 0.

Therefore, the equation of the x-axis is y = 0.

And the χ -coordinate of every point on χ -axis is 0.

Therefore, the equation of the y-axis is x = 0

#420631

Topic: Section Formula

In what ratio, the line joining (– 1, 1) and (5, 7) is divided by the line x + y = 4?

Solution

The equation of the line joining the points (-1, 1) and (5, 7) is given by,

$$y-1 = \frac{7-1}{5+1}(x+1)$$
$$y-1 = \frac{6}{6}(x+1)$$

x - y + 2 = 0.....(1)

and the equation of the given line is

$$x + y - 4 = 0....(2)$$

Thus point of intersection of lines (1) and (2) is given by,

$$x = 1 \text{ and } y = 3$$

Let point (1, 3) divide the line segment joining (– 1, 1) and (5, 7) in the ration 1: k.

Accordingly, by section formula,

$$(1,3) = \begin{cases} \frac{k(-1) + 1(5)}{1+k}, & \frac{k(1) + 1(7)}{1+k} \end{cases}$$

$$\Rightarrow (1,3) = \begin{cases} \frac{-k+5}{1+k}, & \frac{k+7}{1+k} \end{cases}$$

$$\Rightarrow \frac{-k+5}{1+k} = 1, & \frac{k+7}{1+k} = 3$$

$$\Rightarrow \frac{-k+5}{1+k} = 1$$

$$\Rightarrow -k+5 = 1+k$$

$$\Rightarrow 2k = 4 \Rightarrow k = 2$$

Thus, the line joining the points (– 1, 1) and (5, 7) is divided by line x + y = 4 in the ratio 1: 2.