

## Rao IIT Academy/ XIIth CBSE Board / 2017 / Chemistry - Code (56/1) Set-1 / Solutions



2

Rao IIT Academy

## Rao IIT Academy/ XIIth CBSE Board / 2017 / Chemistry - Code (56/1) Set-1 / Solutions



| Rao IIT Academy/ XII <sup>th</sup> CBSE Board / 2017 / Chemistry - Code (56/1) Set-1 / Solutions |                                                                                    |                                                                                                                                                                                              |  |  |  |
|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                                                                                  |                                                                                    | = 3600 C                                                                                                                                                                                     |  |  |  |
|                                                                                                  | 96500 C charge is contained by $\rightarrow 6.023 \times 10^{23}$ no.of electrons. |                                                                                                                                                                                              |  |  |  |
|                                                                                                  |                                                                                    | :. 3600 <i>C</i> $\frac{6.023 \times 10^{23}}{96500} \times 3600$ no.of electrons.                                                                                                           |  |  |  |
|                                                                                                  |                                                                                    | $=0.22\times10^{23}$                                                                                                                                                                         |  |  |  |
| Topic:Electrochemistry; Sub-Topic:Faraday's law_L-2_XII-CBSE Board Exam-2017_Chemistry.          |                                                                                    |                                                                                                                                                                                              |  |  |  |
| 13.                                                                                              | (a)                                                                                | Linkage isomerism.                                                                                                                                                                           |  |  |  |
|                                                                                                  | (b)                                                                                | In $[NiCl_4]^{2-}$ , Ni is sp <sup>3</sup> hybridized due to weak ligand field of $Cl^-$ hence $Ni^{+2}$ has unpaired electrons therefore it is paramagnetic.                                |  |  |  |
|                                                                                                  |                                                                                    | Where as $[Ni(CN)_4]^{-2}$ , Ni is dsp <sup>2</sup> hybridized due to strong ligand field of CN <sup>-</sup> . Hence in $Ni^{+2}$ ions all electrons are paired. Therefore it is diamagnetic |  |  |  |
|                                                                                                  | (c)                                                                                | Because in tetrahedral geometry crystal field splitting energy is very low.                                                                                                                  |  |  |  |
| Topic:Co-ordination ; Sub-Topic:C.F.T_L-2_XII-CBSE Board Exam-2017_Chemistry.                    |                                                                                    |                                                                                                                                                                                              |  |  |  |
|                                                                                                  |                                                                                    |                                                                                                                                                                                              |  |  |  |
| 14.                                                                                              | (a)                                                                                | Multimolecular colloid molecular masses are not very high.                                                                                                                                   |  |  |  |
|                                                                                                  |                                                                                    | Associated colloid molecular masses are very high.                                                                                                                                           |  |  |  |
|                                                                                                  | (b)                                                                                | Peptization is a process of converting a fresh precipitate into colloidal particles by shaking it with disper sion medium in presence of small amount of suitable electrolyte.               |  |  |  |
|                                                                                                  |                                                                                    | Coagulation is process of aggregating together the colloidal particles so as to change them into large sized particles which ultimately settle as a precipitate.                             |  |  |  |
|                                                                                                  | (c)                                                                                | In homogenous catalyst the catalyst and the reactants are present in the same phase in heterogenous catalysis and the reactant are not in the same phase.                                    |  |  |  |
| 14                                                                                               |                                                                                    | (OR)                                                                                                                                                                                         |  |  |  |
| 17.                                                                                              | a)                                                                                 | Disperse phase – oil                                                                                                                                                                         |  |  |  |
|                                                                                                  | 1-)                                                                                | Dispersion medium – water                                                                                                                                                                    |  |  |  |
|                                                                                                  | D)                                                                                 | $FeCl_3 + 3H_2O \longrightarrow Fe(OH)_3 + 3HCl$                                                                                                                                             |  |  |  |
| C) (colloidalsol)                                                                                |                                                                                    |                                                                                                                                                                                              |  |  |  |
| ropic                                                                                            |                                                                                    |                                                                                                                                                                                              |  |  |  |
| 15.                                                                                              | <i>K</i> =                                                                         | $=\frac{2.303}{20}\log\frac{100}{75}$                                                                                                                                                        |  |  |  |
|                                                                                                  | = 2                                                                                | $\frac{2.303}{20} \times (\log 4 - \log 3)$                                                                                                                                                  |  |  |  |
|                                                                                                  | = 2                                                                                | $\frac{2.303}{20} \times (0.6021 - 0.4771)$                                                                                                                                                  |  |  |  |

(4)

**Rao IIT Academy** 

Rao IIT Academy/ XII<sup>th</sup> CBSE Board / 2017 / Chemistry - Code (56/1) Set-1 / Solutions

$$= \frac{2.303}{20} \times 0.125$$
  
 $K = 0.014 \text{ min}^{-1}$   
 $K = \frac{2.303}{t} \times \log \frac{100}{25}$   
 $0.014 = \frac{2.303}{t} \log 4$   
 $t = \frac{2.303}{0.014} \times 0.6021$   
 $t = 99.05 \text{ min}$ 

Topic:Chemical kinetics ; Sub-Topic:First order reaction\_L2\_XII-CBSE Board Exam-2017\_Chemistry.

- 16. (a) 1-Bromopentane
  - (b) 2-Bromopentane
  - (c) 2 Bromo 2 methyl butane

Topic:H.D.A; Sub-Topic:General properties\_L-2\_XII-CBSE Board Exam-2017\_Chemistry.

- 17. (a) **Zone refining:** The method is based upon the principle that the impurities are more soluble in the molten state than in the solid state of the metal.
  - (b) **Froth floatation process:** This method is based upon the fact that the surface of sulfide ores is preferntially wetted by oils while that of gangue is preferntially wetted by water.
  - (c) Chromatography: This method is based upon the principle that the different components of the mixture are adsorbed to different extents on an adsorbent.

Topic:Metallurgy; Sub-Topic:Concentration & refining\_L-1\_XII-CBSE Board Exam-2017\_Chemistry.

18. a) 
$$CH_3COOH \xrightarrow{NH_3/\Delta} CH_3 \xrightarrow{-C-NH_2} \xrightarrow{Br_2/KOH} CH_3 - NH_2 \xrightarrow{CHCl_3/KOH} CH_3 - N \equiv C$$
  
Ethanamide  $CH_3 \xrightarrow{-C-NH_2} \xrightarrow{-CHCl_3/KOH} CH_3 \xrightarrow{-NH_2} \xrightarrow{CHCl_3/KOH} CH_3 \xrightarrow{-N} CH_3 \xrightarrow{-N} = C$ 

b) 
$$C_6H_5N_2^{\oplus}BF_4^{\oplus} \xrightarrow{NaNO_2/Cu} C_6H_5 - NO_2 \xrightarrow{Fe/HCl} C_6H_5 - NH_2$$
  
Nitro benzene  $O_{H_3-C-Cl} \downarrow$  Pyridine  $C_{H_3-C-Cl} \downarrow$  Pyridine  $C_{H_5-NH-C-CH_3}$   
 $N_{-Phenylethanamide}$ 

Topic:Carboxylic acid & amines; Sub-Topic:Chemical reaction\_L-2\_XII-CBSE Board Exam-2017 Chemistry.

5

**Rao IIT Academy** 





(c)  $N_2O_5 + H_2O \rightarrow 2HNO_3$ 

 $N_2O_3 + H_2O \rightarrow 2HNO_2$ 

aqueous solution of  $N_2O_5$  gives nitric acid and

aqueous solution of  $N_2O_3$  gives nitrous acid and

Nitric acid is more acidic than nitrous acid

Hence  $N_2O_5$  is more acidic than  $N_2O_3$ 

Topic:P-block; Sub-Topic:Group-15-17\_L-2\_XII-CBSE Board Exam-2017\_Chemistry.

22. (a) The acetyl group being electron with drawing attract the lone pair of electrons on the N-atom towards itself. As a result, lone pair of electrons is not exclusively available for donation to the benzene hence activating effect of the amino group is reduced.



(b)  $CH_3NH_2$  is more basic than  $C_6H_5NH_2$  because  $CH_3$ -group in  $CH_3NH_2$  has +I effect hence it increases electron density on N-atom. But in  $C_6H_5NH_2$  the lone pair of electron involved in resonance with benzene hence not available for donation.



(c) Due to formation of anilinium ion which is electron with drawing group hence gives m-nitroaniline.



## Topic:Amines; Sub-Topic:Basicity\_L-2\_XII-CBSE Board Exam-2017\_Chemistry.

23. (a) (i) Rupali is aware of current scientific invensions.

- (ii) Rupali is a well-wisher of her friends.
- (b) Starch is commonly present in bread.
- (c) The two types of secondary structure of protein is  $\alpha$  helix and  $\beta$  pleated sheet
- (d) Vitamic C and vitamin  $B_1$  are water soluble

Topic:Biomolecules ; Sub-Topic:Value based\_L-2\_XII-CBSE Board Exam-2017\_Chemistry.

Rao IIT Academy

## Rao IIT Academy/ XII<sup>th</sup> CBSE Board / 2017 / Chemistry - Code (56/1) Set-1 / Solutions

- (a) (i) The transition elements have their valence electrons in two different sets of orbitals i.e. (n-1)dand ns. Since there is very little difference in energies of these orbitals both energy levels can be used in bond formation. Higher oxidation states like +3, +4, +5, +6 corresponds to the use of all 4s and 3d electrons in the transition series of elements.
  - (ii) Transition elements have low ionization energies. Hence the electrons present in penultimate d and outermost s orbitals are available for metallic bonding. Thus metallic bonds are strong and they are hard metals. In Zn, Cd and Hg all the (n 1) d and ns orbital is completely occupied, hence due to absence of unpaired electrons they are soft metals.
  - (iii) The comparatively high value of  $E^{\circ}(Mn^{3+},Mn^{2+})$  is an account high stability of  $Mn^{2+}$  ion due to stable d<sup>5</sup> configuration of  $Mn^{2+}$  ion.
  - (b) Difference : Lanthanoids, do not form oxocations.

Lanthanoids, do not form oxocations.

Actinoids form oxocations  $(CO_2^{2+}, PuO_2^{2+})$ 

Similarity:

Both lanthanoids and actinoids mainly show oxidation state of +3.

(**OR**)

(a)

24.

24.

(i)  $Cr^{+3}$  is more stable in aqueous solutions because it form octahedral complex  $\left[Cr(H_2O)_6\right]^{+3}$ 

 $Cr^{+3}$  should be more stable as the 3d electrons will enter the t<sub>2</sub>g orbitals. Due to CFSE of half filled t<sub>2</sub>g orgibals of  $Cr^{+3}$ .

(ii)  $Mn^{+3}$  is strong oxidising agent because it will easily accept one electron and convert in to  $Mn^{+2}$  because  $Mn^{+2}$  has  $d^5$  configuration.

$$Mn^{+3}(d^{4}) + 1e^{-} \rightarrow Mn^{+2}(d^{5})$$

more stable

(iii)  $Ti^{+4}$  is colour less because no unpair electron present in d – orbital.

$$Ti^{+4} = [Ar] 3d^0 4s^0$$

(b) (i) 
$$2MnO_4^- + 16H^+ + 5S^{2-} \longrightarrow 2Mn^{2+} + 8H_2O + 5S^{2-} \longrightarrow 2Mn^{2+} \longrightarrow 2Mn^{2+} + 8H_2O + 5S^{2-} \longrightarrow 2Mn^{2+} \longrightarrow 2Mn^{2+} \longrightarrow 2Mn^{2+} \longrightarrow 2Mn^{2+} \longrightarrow 2Mn^{2+}$$

(ii) 
$$KMnO_4 \xrightarrow{\Lambda} K_2MnO_4 + MnO_2 + O_2$$

Topic: d & f - block ; Sub-Topic:chemical properties\_L-2\_XII-CBSE Board Exam-2017\_Chemistry.

25. (a)  $T_f^0 = 273.15 \,\mathrm{k}$ 

 $T_{f} = 269.15 \,k$ 

10% solution of sucrose

 $w_{sucrose} = 10 g$ 

$$w_{H_2O} = 90 \, g$$

**Rao IIT Academy** 

 $M.M_{sucrose} = 342 \text{ g mole}^{-1}$  $\Delta T_{f(sucrose)} = 273.15 - 269.15 K$ = 4 K $\Delta T_{f(sucrose)} = \frac{k_{f} \times w_{sucrose} \times 1000}{w_{H_{2}O} \times M.M_{sucrose}}$  $4 = \frac{k_f \times 10 \times 1000}{90 \times 342}$  $k_{f} = \frac{4 \times 90 \times 342}{10 \times 1000}$  $= 12.312 \text{ kg mol}^{-1}$  $w_{glu \cos e} = 10 g$  $w_{\rm H,O} = 90 \, g$  $M.M_{glu \cos e} = 180 \text{ g mole}^{-1}$  $\Delta T_{f(glucose)} = \frac{12.312 \times 10 \times 1000}{90 \times 180}$ = 7.6 K $\Delta T_{f} = 7.6 \text{ K}$  $273.15 - T_f = 7.6$  $T_{\rm f} = 273.15 - 7.6$ 

```
T_{f(glu \cos e)} = 265.55 \text{ k}
```

(

(b) (i) Molality : Molality of a solution is defined as the number of moles of solute dissolved in 1 kg of the solvent.

$$M = \frac{\text{no. of moles of the solute}}{\text{mass of solvent in kg}}$$

 (ii) Abnormal Molecular Mass: When molecular mass of substance determined by studying any of colligative properties, comes out to be different thean the theoretically expected value the substance is said to show abnormal molecular mass.

Topic: Solutions ; Sub-Topic:Depression of freezing point\_L-2\_XII-CBSE Board Exam-2017\_Chemistry. 25. (OR)

(a) 
$$w_{urea} = 30 g M.M_{urea} = 60 g mole^{-1}$$

$$w_{H,O} = 846 \text{ g}$$
  $M.M_{H,O} = 18 \text{ g mol}^{-1}$ 

Rao IIT Academy

9

| $p_{H_{2}O}^{o} = 23.8 \text{ mm of Hg}$                                                                                                                   |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| $n_{urea} = \frac{30}{60} = 0.5 \text{mole}$                                                                                                               |  |  |  |
| $n_{\rm H_2O} = \frac{846}{18} = 47 \rm{mole}$                                                                                                             |  |  |  |
| $\frac{\mathbf{p}^{\circ} - \mathbf{p}}{\mathbf{p}^{\circ}} = \frac{\mathbf{n}_{\text{urea}}}{\mathbf{n}_{\text{urea}} + \mathbf{n}_{\text{H}_2\text{O}}}$ |  |  |  |
| $\frac{23.8 - p}{23.8} = \frac{0.5}{47 + 0.5}$                                                                                                             |  |  |  |
| $\frac{23.8 - p}{23.8} = \frac{0.5}{47.5}$                                                                                                                 |  |  |  |
| $\frac{23.8 - p}{23.8} = 0.011$                                                                                                                            |  |  |  |
| $23.8 - p = 0.011 \times 23.8$                                                                                                                             |  |  |  |
| 23.8-p=0.2618                                                                                                                                              |  |  |  |
| p=23.8 - 0.2618                                                                                                                                            |  |  |  |
| p = 23.5382                                                                                                                                                |  |  |  |
| p=23.54 mm of Hg                                                                                                                                           |  |  |  |

(b)

|    | Ideal Solution                                                           | Non-Ideal Solution                                       |
|----|--------------------------------------------------------------------------|----------------------------------------------------------|
| 1. | An ideal solution is that solution in which each component obey Raoult's | A solution which does not<br>obey Raoult's Law is called |
|    | Law.                                                                     | non ideal solution.                                      |
| 2. | $\Delta H_{mix} = 0$                                                     | $\Delta H_{mix} \neq 0$                                  |
|    | $\Delta V_{mix} = 0$                                                     | $\Delta V_{mix} \neq 0$                                  |

Topic:Solutions ; Sub-Topic:Vapour pressure\_L-2\_XII-CBSE Board Exam-2017\_Chemistry.





