MARKING SCHEME

SET 55/1 (Compartment)

Q.No.	Expected Answer/Value Points	Marks	Total Marks
1.	$v_{d}=\frac{e V}{m \ell} \tau$	1	1
2.	With increase in temperature, the relaxation time (average time between successive collisions) decreases and hence resistivity increases. Alternatively: Resistivity $\rho\left(=\frac{m}{n e^{2} \tau}\right)$ increases as τ decreases with increase in temperature.	1	1
3.	Loss of strength of a signal while propagating through a medium.	1	1
4.	The locus of all points that are in the same phase / The surface of constant phase.	1	1
5.	A has positive polarity	1	1
6.	Telephone (any other correct example)	1	1
7.	$v=\frac{E}{B}$ where v is speed of electron Alternatively: $\left\|\overrightarrow{F_{E}}\right\|=\left\|\overrightarrow{F_{B}}\right\|$	1	1
8.	Line B Since slope (q / V) of B is lesser than that of A .	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$	1
9.	Formula $1 / 2$ Substitution and simplification 1 Result $1 / 2$ Let P be the required point at a distance x from charge q $\begin{aligned} & \therefore \frac{1}{4 \pi \epsilon_{o}} \frac{q}{x}+\frac{1}{4 \pi \epsilon_{o}} \frac{(-2 q)}{(d-x)}=0 \\ & \frac{1}{x}=\frac{2}{d-x} \\ & x=\frac{d}{3} \end{aligned}$ required point is at a distance $\frac{d}{3}$ from charge q	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$	

\begin{tabular}{|c|c|c|c|}
\hline 11. \& \begin{tabular}{|lc|}
\hline Formula \& 1 \\
Substitution and Calculation \& \(1 / 2\) \\
Result \& \(1 / 2\) \\
\hline
\end{tabular}
\[
\begin{aligned}
\lambda \& =\frac{h}{m v} \\
\& =\frac{6.63 \times 10^{-34}}{9.1 \times 10^{-31} \times 2.2 \times 10^{8}} \\
\& =3.31 \times 10^{-12} \mathrm{~m}
\end{aligned}
\] \& 1
\(1 / 2\)

$1 / 2$ \& 2

\hline 12. \& | Flux through S_{1} $1 / 2$
 Flux through S_{2} $1 / 2$
 Ratio $1 / 2$
 Flux through S_{1} with dielectric median $1 / 2$ |
| :--- |
| Flux through $\mathrm{S}_{1}, \Phi_{1}=\frac{Q}{\epsilon_{o}}$ |
| Flux through $\mathrm{S}_{2}, \Phi_{2}=\frac{Q+2 Q}{\epsilon_{o}}=\frac{3 Q}{\epsilon_{o}}$ |
| Ratio of flux $=1: 3$ |
| No change in flux through S_{1} with dielectric medium inside the sphere S_{2} | \& $1 / 2$

$1 / 2$
$1 / 2$
$1 / 2$ \& 2

\hline 13. \& | (i) Statement of Biot Savart's law 1
 (ii) Expression for magnetic field $1 / 2$
 (iii) Showing field lines $1 / 2$ |
| :--- |
| (i) According to Biot Savart's law, the magnetic field due to a current element $\overrightarrow{d \ell}$ carrying current I at a point with position P vector \vec{r} is given by |
| (ii) $\mathrm{B}=\frac{\mu_{0} I}{2 r}$ |
| Field lines | \& 1

$11 / 2$

$1 / 2$ \& 2

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline 14. \& \begin{tabular}{l}
(a) Conditions
\[
1 / 2+1 / 2
\] \\
(b) Formation of rainbow \\
The condition for observing a rainbow are : \\
i. The sun comes out after a rainfall. \\
ii. The observer stands with the sun towards his/her back. (any one) \\
Formation of a rainbow: \\
\(\rightarrow\) The rays of light reach the observer through a refraction, followed by a reflection, followed by a refraction. \\
\(\rightarrow\) Figure shows red light, from drop 1 and violet light from drop 2, reaching the observers eye.
\end{tabular} \& \(1 / 2\)
\(1 / 2\)

$1 / 2$

1 \& 2

\hline 15. \& | One difference between ε and V $1 / 2$
 VI Graph $1 / 2$
 Determination of ' r ' and ε 1 |
| :--- |
| Difference between $\operatorname{emf}(\varepsilon)$ and terminal voltage (v) |
| (Any one) or any other relevant difference |
| Negative of slope gives internal resistance. | \& $1 / 2$

1

$1 / 2$ \& 2

\hline
\end{tabular}

16.	(a) Difference between a permanent magnet and an electromagnet $1 / 2+1 / 2$ (b) Any two properties of material $1 / 2+1 / 2$ a) An electromagnet consists of a core made of a ferromagnetic material placed inside a solenoid. It behaves like a strong magnet when current flows through the solenoid and effectively loses its magnetism when the current is switched off. (i) A permanent magnet is also made up of a ferromagnetic material but it retains its magnetism at room temperature for a long time after being magnetized once. b) (i) High permeability (ii) Low retentivity (iii)Low coercivity (Any two) [Note: Give $1 / 2$ mark if the student just writes 'soft iron' is a suitable material for making electromagnets.]	$1 / 2$ $1 / 2$ $1 / 2+1 / 2$	2
17.	Three basic properties $1 / 2+1 / 2+1 / 2$ Plot of KE max versus v Three basic properties of photons: (i) Photons are quanta or discrete carriers of energy. (ii) Energy of a photon is proportional to the frequency of light. (iii)The photon gives all its energy to the electron with which it interacts. Einstein's photoelectric equation $\frac{1}{2} m v_{\max }^{2}=h v-w$	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$	2
18.	Naming the gate $1 / 2$ Truth Table 1 Logic Symbol $1 / 2$ NAND GATE	1/2	

\begin{tabular}{|c|c|c|c|}
\hline 20. \& \begin{tabular}{l}
(a) Principle of potentiometer \\
Reason for Part (i), (ii) and (iii) \\
(b) Graph \\
a) Principle of potentiometer: \\
The potential drop across the length of a steady current carrying wire of uniform cross section is proportional to the length of the wire. \\
i. We use a long wire to have a lower value of potential gradient (i.e. a lower 'least count' or greater sensitivity of the potentiometer \\
ii. The area of cross section has to be uniform to get a 'uniform wire' as per the principle of the potentiometer \\
/ to ensure a constant value of resistance per unit length of the wire. \\
iii. The emf of the driving cell has to be greater than the emf of the primary cells as otherwise no balance point would be obtained. \\
b) Potential gradient \(\mathrm{K}=\frac{V}{L}\) \\
\(\therefore\) the required graph is as shown
\end{tabular} \& \(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\) \& 3 \\
\hline 21. \& \begin{tabular}{l}
\begin{tabular}{|lll|}
\hline (i) \& Formula \& \(1 / 2\) \\
\& Energy in the first excited state \& \(1 / 2\) \\
\& Energy required \& \(1 / 2\) \\
(ii) \& Kinetic energy \& \(1 / 2\) \\
\& Orbital radius (Formula and Result) \& \(1 / 2+1 / 2\) \\
\hline
\end{tabular} \\
(i) For the hydrogen atom \\
a. \(\left|E_{n}\right| \propto \frac{1}{n^{2}}\) \\
b. \(\therefore\) Energy of first excited state \(=\frac{-13.6}{2^{2}}=-3.4 \mathrm{eV}\) \\
c. \(\therefore\) Energy required \(=[-3.4-(13.6) \mathrm{eV}]=10.2 \mathrm{eV}\) \\
(ii) \\
a. Kinetic energy \(=\mid\) energy of 1 st excited state \(\mid\) \(=3.4 \mathrm{eV}\) \\
b. Orbital radius in nth state \(\propto n^{2}\)
\[
\begin{aligned}
\& =4 \times 0.53 \dot{A} \\
\& =2.12 \dot{A}
\end{aligned}
\]
\end{tabular} \& \(1 / 2\)

$1 / 2$
$1 / 2$

$1 / 2$
$1 / 2$

$1 / 2$ \& 3

\hline
\end{tabular}

22.	(a) Graph showing variation of intensity with (b) Determination of values of θ and β (a) The required graph would have the form shown as: I Using $I_{2}=I_{1} \cos ^{2} \theta$ (b) $I_{1}=$ Light transmitted by P_{1} $I_{3}=$ Light transmitted by $P_{3}=I_{1} \cos ^{2} \beta$ $I_{2}=$ Light transmitted by $P_{2}=I_{3} \cos ^{2}(\theta-\beta)$ Alternatively, (Award mark to student who indicates correct value of I_{1}, I_{2} and I_{3} by making a diagram) $\begin{aligned} & \therefore I_{2}=I_{3} \\ & I_{1} \cos ^{2} \beta \cdot \cos ^{2}(\theta-\beta)=I_{1} \cos ^{2} \beta \end{aligned}$ $\theta=\beta$ Also Therefore $\beta=0^{\circ}$ or π	1	3

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
OR
\[
\begin{aligned}
\& \text { We have } \mu=i A \\
\& =\frac{e \cdot \mathrm{v}}{2 \pi r} \cdot \pi r^{2} . \\
\& =\frac{e \mathrm{v} r}{2} \\
\& \ell=m \mathrm{v} r \\
\& \mathrm{v} r=\frac{\ell}{m} \\
\& \vec{\mu}=\frac{-e \vec{l}}{2 m}
\end{aligned}
\] \\
The direction of \(\vec{\mu}\) is opposite to that of \(\vec{l}\) because of the negative charge of the electron.
\end{tabular} \& \(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\)

$1 / 2$
$1 / 2$ \& 3

\hline 24. \& | (a) Derivation of the result $I=4 I_{0} \cos ^{2} \frac{\phi}{2}$ 2
 (b) Conditions for
 constructive and $1 / 2$
 destructive interference $1 / 2$ |
| :--- |
| (a) The resultant displacement is given by : $\begin{aligned} & y=y_{1}+y_{2} \\ & \quad=a \cos \omega t+a \cos (\omega t+\phi) \\ & =a \cos \omega t(1+\cos \phi)-a \sin \omega t \sin \phi \end{aligned}$ |
| Put $R \cos \theta=a(1+\cos \phi)$ $\begin{aligned} & R \sin \theta=a \sin \phi \\ \therefore & R^{2}=a^{2}\left(1+\cos ^{2} \phi+2 \cos \phi\right)+a^{2} \sin ^{2} \phi \\ & =2 a^{2}(1+\cos \phi)=4 a^{2} \cos ^{2} \frac{\phi}{2} \\ \therefore & I= \\ \hline & R^{2}=4 a^{2} \cos ^{2} \frac{\phi}{2}=4 I_{0} \cos ^{2} \frac{\phi}{2} \end{aligned}$ |
| For constructive interference , $\cos \frac{\phi}{2}= \pm 1 \text { or } \frac{\phi}{2}=n \pi \text { or } \phi=2 n \pi$ |
| For destructive interference , $\cos \frac{\phi}{2}=0 \quad \text { or } \frac{\phi}{2}=(2 n+1) \frac{\pi}{2} \text { or } \phi=(2 n+1) \pi$ | \& $1 / 2$

$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$ \& 3

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline 25. \& \begin{tabular}{ll}
\hline (a) Reason \& 1 \\
(b) Any two values \& \(1 / 2+1 / 2\) \\
(c) Determination of sideband frequencies \& \(1 / 2+1 / 2\) \\
\hline (a) The ultra high frequency em radiations, continuously emitted by a mobile \\
phone, may harm the system of the human body. \\
(b) Sister Anita shows \\
(i) Concern about her brother \\
(ii) Awareness about the likely effects of em radiations on human body \\
(iii) Sense of responsibility \\
(any two) \\
(c) The side bands are \\
\(\left(v_{e}+v_{m}\right)\) and \(\left(v_{e}-v_{m}\right)\) \\
or \((1000+10) \mathrm{kHz}\) and \((1000-10) \mathrm{kHz}\) \\
1010 kHz and 990 kHz
\end{tabular} \& 1

$1 / 2$
$1 / 2$

$1 / 2$
$1 / 2$
$1 / 2$ \& 3

\hline 26. \& | (a) Reason for momentary deflection |
| :--- |
| Deflection after the capacitor gets fully charged |
| (b) Explanation for modification in Ampere's circuital law |
| (a) The momentary deflection is due to the transient current flowing through the circuit when the capacitor is getting charged. |
| The deflection would be zero when the capacitor gets fully charged. |
| (b) We consider the charging of a capacitor when it is being charged by connecting it to a dc source. |
| C |
| In Ampere's circuital law, namely |
| $B(2 \pi r)=\mu_{0} i$ |
| We have i as non zero for surface (a) but zero for surface (c) |
| Hence there is a contradiction in the value of B; calculated one way we have a magnetic field at P but calculated another way we have $B=0$ |
| To remove this contradiction the concept of displacement current | \& $1 / 2$

$1 / 2$

$1 / 2$ \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
(\(i_{d}=\varepsilon_{0} \frac{d \phi_{E}}{d t}=i\)) was introduced and Ampere's circuital law was put in its generalized form namely
\[
\oint_{B} \cdot \overrightarrow{d l}=\mu_{0} i_{c}+\mu_{0} \epsilon_{0} \frac{d \phi_{E}}{d t}
\] \\
This form gives consistent results for values of B irrespective of which surface is used to calculate it.
\end{tabular} \& \(1 / 2\)
\(1 / 2\) \& 3 \\
\hline 27. \& \begin{tabular}{l}
\begin{tabular}{|ll|}
\hline (a) Definition of activity and its SI unit \& \(1 / 2+1 / 2\) \\
(b) Calculation of the activity of the sample \& 2 \\
\hline
\end{tabular} \\
a) The activity of a sample of radioactive nucleus equals its decay rate(or number of nuclei decaying per unit time) \\
Its SI unit is disintegration/s or Becquerel \\
b) \(\mathrm{R}=\lambda N\)
\[
\begin{aligned}
\& =\frac{\log _{e^{2}} \times 25.3 \times 10^{20} \times 10}{4.5 \times 10^{9}} \\
\& =\frac{0.6931 \times 25.3 \times 10^{21}}{4.5 \times 10^{9} \times 365 \times 24 \times 60 \times 60} \\
\& =1.24 \times 10^{5} \mathrm{dps}
\end{aligned}
\] \\
[Note: If a candidate gives the result in (year) \({ }^{-1}\), give full credit.]
\end{tabular} \& \(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\) \& 3 \\
\hline 28. \& \begin{tabular}{l}
\begin{tabular}{|lc|}
\hline (a) Schematic arrangement \& 1 \\
(b) Principle of a transformer \& \(1 / 2\) \\
Obtaining expression \& \\
(i) \(\frac{V_{1}}{V_{2}}=\frac{N_{1}}{N_{2}}\) \& 1 \\
(ii) \(\frac{V_{1}}{V_{2}}=\frac{I_{2}}{I_{1}}\) \& 1 \\
(c) Assumptions (any one) \& \(1 / 2\) \\
(d) Two reasons for energy losses \& \(1 / 2+1 / 2\) \\
\hline
\end{tabular} \\
a) \\
b) Principle of a transformer: when alternating current flows through the primary coil, an emf is induced in the neighbouring (secondary) coil \\
(i) Let \(\frac{d \phi}{d t}\) be the tare of charge of flux through each turn of the primary and the secondary coil
\end{tabular} \& 1

$1 / 2$ \&

\hline
\end{tabular}

Adding equation (i) and equation (ii)

$$
\begin{aligned}
& \frac{n_{1}}{v}-\frac{n_{1}}{u}=\left(n_{2}-n_{1}\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \\
& \frac{1}{v}-\frac{1}{u}=\left(\frac{n_{2}}{n_{1}}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)
\end{aligned}
$$

We know If $u=\infty, v=f$
$\frac{1}{v}-\frac{1}{u}=\frac{1}{f}$

$$
\frac{1}{f}=\left(n_{2}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)
$$

(b) $\frac{1}{f}=(\mu-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$

$$
\frac{1}{20}=(1.55-1)\left(\frac{1}{R}-\frac{1}{-R}\right)
$$

$$
=0.55 \times \frac{2}{R}
$$

$$
R=0.55 \times 2 \times 20=22 \mathrm{~cm}
$$

OR

(a) Labelled ray diagram Derivation of expression for magnifying power
(b) Determination of total magnification
a)

[Note : deduct $1 / 2$ mark if not labelled]
Derivation
Magnifying Power
$\mathrm{M}=\frac{\tan \beta}{\tan \alpha} \cong \frac{\beta}{\alpha}$
Final image is formed at infinity when the image $A^{\prime} B^{\prime}$ is formed by the objective lens at the force of the eye piece

$$
\begin{aligned}
m & =\frac{h}{f_{e}} \times \frac{f_{0}}{h} \\
& =\frac{f_{0}}{f_{e}}
\end{aligned}
$$

$$
1 / 2
$$

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
(a) Circuit diagram 1 \\
Description of current formation \\
Deduction of \(I_{e}=I_{b}+I_{c}\) \\
\(1 / 2\) \\
(b) Circuit diagram \\
1 \\
Working
\end{tabular} \& \& \\
\hline \& \begin{tabular}{l}
a) The circuit diagram is shown here \\
The emitter-base junction, being forward biased, the majority charge carriers (electrons), from the emitter, flow into the base region constituting the emitter current \(\left(I_{E}\right)\) \\
The base region, being very thin, only a (very) small fraction, of these charge carriers, swamps the holes present in the base region resulting in a (small) base current (\(I_{B}\)). \\
The majority of these charge carriers, are attracted by the (reverse biased) collector. These make up the collector current \(\left(I_{C}\right)\). \\
It is clear, therefore, that \\
\(I_{E}=I_{C}+I_{B}\) \\
b) The circuit diagram, of a transistor, working as an amplifier, in its CE mode, is shown here. \\
If a small sinusoidal voltage is superimposed on the dc base bias by connecting the source of this signal in series with \(V_{B B}\) supply. Then the base current will have sinusoidal variations superposed on the values \(I_{B}\). As a consequence the collector current also will have sinusoidal variation superimposed on the value of \(I_{C}\) producing in turn corresponding change in the output voltage \(V_{o}\).
\end{tabular} \& \(1 ⁄ 2\)

1

1112 \& 5

\hline
\end{tabular}

