## Marking Scheme <br> Chemistry - 2014 <br> Outside Delhi- SET (56/1)

www.tiwariacademy.com

\begin{tabular}{|c|c|c|}
\hline 1 \& It first increases then decreases or graphical representation. \& 1 \\
\hline 2 \& Zn acts as reducing agent. \& 1 \\
\hline 3 \& 2 \& 1 \\
\hline 4 \& \begin{tabular}{l}
2-Chlorobutane \\
or \\
or first molecule of the pair.
\end{tabular} \& 1 \\
\hline 5 \& Proteins \& 1 \\
\hline 6. \& Diazotization \& 1 \\
\hline 7. \& Glucose \& Fructose \& 1 \\
\hline 8. \&  \& 1 \\
\hline 9. \& Given; \(\mathrm{d}=2.8 \mathrm{~g} / \mathrm{cm}^{3} ; \quad \mathrm{Z}=4 \quad ; \mathrm{a}=4 \times 10^{-8} \mathrm{~cm} \quad \mathrm{~N}_{\mathrm{A}}=6.022 \times 10^{23}\) per mol
\[
\begin{aligned}
\& d=\frac{\mathrm{Z} \times \mathrm{M}}{\mathrm{a}^{3} \times \mathrm{N}_{\mathrm{A}}} \quad \text { or } \quad \mathrm{M}=\frac{\mathrm{d} \times \mathrm{a}^{3} \times \mathrm{N}_{\mathrm{A}}}{\mathrm{Z}} \\
\& \Rightarrow \mathrm{M}=\frac{2.8 \mathrm{~g} \mathrm{~cm}^{-3}\left(4 \times 10^{-8} \mathrm{~cm}\right)^{3} \times 6.022 \times 10^{23}}{4} \\
\& \mathrm{M}=2.8 \times 16 \times 10^{-1} \times 6.022=26.97 \mathrm{~g} / \mathrm{mol}
\end{aligned}
\] \& \(1 / 2\)

$1 / 2$ <br>

\hline 10 \& | (i) Metal excess defect / Metal excess defect due to anionic vacancies filled by free electrons / Due to F - centers. |
| :--- |
| (ii) Schottky defect. | \& 1

1 <br>
\hline \& Or \& <br>
\hline
\end{tabular}

| 10 | (i) Tetrahedral void is surrounded by 4 constituent particles (atoms / molecules / ions). <br> Octahedral void is surrounded by 6 constituent particles (atoms / molecules / ions). <br> radius ratio ( $\mathrm{r}^{+} / \mathrm{r}^{-}$) for Tetrahedral void is 0.225 \& radius ratio for octahedral voids is 0.414 <br> (ii) A regular three dimensional arrangement of points in space is called a crystal lattice. <br> Unit cell is the smallest portion of a crystal lattice which, when repeated in three directions, <br> generates an entire lattice. / unit cell is the miniature of crystal lattice / microscopic edition of the <br> crystal lattice. | 1 |
| :--- | :--- | :--- | :--- |

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}


\[
\mathrm{CH}_{3}-\stackrel{+}{\mathrm{CH}_{2}} \xrightarrow{\mathrm{Br}^{-}} \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{Br}
\] \\
Or \\
\(\left(\right.\) where \(\left.\mathrm{R}=-\mathrm{CH}_{3}\right)\)
\end{tabular} \& \(1 / 2\)
\(1 / 2\)

$1 / 2$ <br>

\hline 18 \& | (i) Phenol \& Formaldehyde |
| :--- |
| (ii) 2-Chloro-1,3-butadiene (or Chloroprene) | \& <br>


\hline 19 \& | (a) Given $\mathrm{E}^{\circ} \mathrm{Cell}=+2.71 \mathrm{~V} \quad \& \quad \mathrm{~F}=96500 \mathrm{C} \mathrm{mol}^{-1} \quad \mathrm{n}=2$ (from the given reaction) $\begin{aligned} \Delta \mathrm{rG}^{\mathrm{O}} & =-\mathrm{n} \times \mathrm{F} \times \mathrm{E}^{\mathrm{o}} \mathrm{Cell} \\ \Delta \mathrm{rG}^{\mathrm{O}} & =-2 \times 96500 \mathrm{C} \mathrm{~mol}^{-1} \times 2.71 \mathrm{~V} \\ & =-523030 \mathrm{~J} / \mathrm{mol} \text { or }-523.030 \mathrm{~kJ} / \mathrm{mol} \end{aligned}$ |
| :--- |
| (b) Hydrogen - oxygen fuel Cell / Fuel cell. | \& \[

$$
\begin{aligned}
& 1 / 2 \\
& 1 / 2 \\
& 1 \\
& 1
\end{aligned}
$$
\] <br>

\hline 20 \& |  | $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ | $\rightarrow \mathrm{SO}_{2}$ | + |
| :--- | :--- | :---: | :---: |
| $\mathrm{At} \mathrm{t}=0 \mathrm{~s}$ | 0.4 atm | $\mathrm{Cl}_{2}$ |  |
| $\mathrm{At} \mathrm{t}=100 \mathrm{~s}$ | $(0.4-\mathrm{x}) \mathrm{atm}$ | 0 atm |  |
| $\mathrm{Pt}=0.4-\mathrm{x}$ | $+\mathrm{x}+\mathrm{x}$ | x atm | x atm |
| $\mathrm{Pt}=0.4+\mathrm{x}$ |  |  |  |
| $0.7=0.4+\mathrm{x}$ |  |  |  |
| $\mathrm{x}=0.3$ |  |  |  |
| $\mathrm{k}=\frac{2.303}{\mathrm{t}}$ | $\log \frac{p_{i}}{2 p_{i}-p_{t}}$ |  |  |
| $\mathrm{k}=\frac{2.303}{\mathrm{t}}$ | $\log \frac{0.4}{0.8-0.7}$ |  |  |
| $\mathrm{k}=\frac{2.303}{100 \mathrm{~s}}$ | $\log \frac{0.4}{0.1}$ |  |  |
| $\mathrm{k}=\frac{2.303}{100 \mathrm{~s}} \times 0.6021=1.39 \times 10^{-2} \mathrm{~s}^{-1}$ |  |  |  | \& | 1 |
| :--- |
| 1 |
| 1 | <br>


\hline 21 \& | These are liquid-liquid colloidal systems or the dispersion of one liquid in another liquid. |
| :--- |
| Types: (i) Oil dispersed in water (O/W type) Example; milk and vanishing cream |
| (ii) Water dispersed in oil (W/O type) Example; butter and cream. | \& \[

$$
\begin{aligned}
& \hline 1 \\
& 1 / 2+1 / 2 \\
& 1 / 2+1 / 2
\end{aligned}
$$
\] <br>

\hline
\end{tabular}

|  | (Any one example of each type) |  |
| :---: | :---: | :---: |
| 22 | (i) As N can't form 5 covalent bonds / its maximum covalency is four. <br> (ii) This is due to very small size of Oxygen atom / repulsion between electrons is large in relatively small 2 p sub-shell. <br> (iii) In $\mathrm{H}_{3} \mathrm{PO}_{2}$ there are $2 \mathrm{P}-\mathrm{H}$ bonds, whereas in $\mathrm{H}_{3} \mathrm{PO}_{3}$ there is $1 \mathrm{P}-\mathrm{H}$ bond | 1 1 <br> 1 |
| 23 | (i) Tetraamminedichloridochromium (III) chloride. <br> (ii) Optical isomerism <br> (iii) In $\left[\mathrm{NiCl}_{4}\right]^{2-} ; \mathrm{Cl}^{-}$acts as weak ligand therefore does not cause forced pairing, thus electrons will remain unpaired hence paramagnetic. <br> In $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$; CO acts as strong ligand therefore causes forced pairing, thus electrons will become paired hence diamagnetic. | 1 1 $1 / 2+1 / 2$ |
| 24 | (a) <br> (i) <br> (ii) <br> (b) (i) $\mathrm{CH}_{3}-\mathrm{I}$ <br> (ii) $\mathrm{CH}_{3}-\mathrm{Cl}$ | 1 <br> 1 $1 / 2+1 / 2$ |
| 25 | (i) As primary amines form inter molecular H - bonds, but tertiary amines don't form H - bonds. <br> (ii) Aniline forms salt with Lewis acid $\mathrm{AlCl}_{3}$. <br> (iii) This is because of the combined effect of hydration and inductive effect ( +I effect). |  |
|  | Or |  |
| 25 | (i) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2} \xrightarrow{\mathrm{Sn}+\mathrm{HCl}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2} \xrightarrow[\text { A }]{\mathrm{NaNO}_{2}+\mathrm{HCl} ; 273 \mathrm{~K}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{2}{ }^{+} \mathrm{Cl}^{-} \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$ <br> (ii) | $\begin{aligned} & 1 / 2+1 / 2+1 / 2 \\ & 1 / 2+1 / 2+1 / 2 \end{aligned}$ |
| 26 | (i) Peptide linkage is an amide formed between - COOH group and $-\mathrm{NH}_{2}$ group ( - CO-NH- ) <br> (ii) Specific sequence of amino acids in a polypeptide chain is said to be the primary structure of the protein. |  |

\begin{tabular}{|c|c|c|}
\hline \& (iii) When a protein in its native form, is subjected to change in temperature or change in pH , protein loses its biological activity. This is called denaturation of protein \& 1 \\
\hline 27 \& \begin{tabular}{l}
(i) (a) dedicated towards work/ kind/ compassionate (any two). \\
(b) Dutiful / caring / humane in the large interest of public health in rural area. (any other suitable value) \\
(ii) Narcotic analgesics \\
(iii) Aspartame / Saccharin / Alitame / Sucrolose.(any one)
\end{tabular} \& 1
\(1 / 2\)
\(1 / 2\)
1 \\
\hline 28 \& \begin{tabular}{l}
(a) \\
(i) Molarity is defined as number of moles of solute dissolved in one litre of solution. \\
(ii) It is equal to elevation in boiling point of 1 molal solution. \\
(b) For isotonic solutions: \(\quad \pi\) urea \(=\pi\) glucose
\[
\begin{aligned}
\& \frac{\mathrm{W}_{\text {urea }}}{\mathrm{M}_{\text {urea }} \mathrm{X} \mathrm{~V}_{\mathrm{s}}}=\frac{\mathrm{W}_{\text {Glucose }}}{\mathrm{M}_{\text {Glucose }} \times \mathrm{V}_{\mathrm{s}}} \quad \text { (As volume of solution is same) } \\
\& \frac{\mathrm{W}_{\text {urea }}}{\mathrm{M}_{\text {urea }}}=\frac{\mathrm{W}_{\text {Glucose }}}{\mathrm{M}_{\text {Glucose }}} \text { or } \frac{15 \mathrm{~g}}{60 \mathrm{~g} \mathrm{~mol}^{-1}}=\frac{\mathrm{W}_{\text {Glucose }}}{180 \mathrm{~g} \mathrm{~mol}^{-1}} \\
\& \mathrm{~W}_{\text {Glucose }}=\frac{15 \mathrm{~g} \mathrm{x} 180 \mathrm{~g} \mathrm{~mol}^{-1}}{60 \mathrm{~g} \mathrm{~mol}^{-1}}=45 \mathrm{~g}
\end{aligned}
\]
\end{tabular} \& 1
1
\(1 / 2\)
\(1 / 2\)
\(1 / 2\)
1
1 \\
\hline \& OR \& \\
\hline 28 \& \begin{tabular}{l}
(a) It shows positive deviation. \\
It is due to weaker interaction between acetone and ethanol than ethanol-ethanol interactions. \\
(b) Given: \(\mathrm{W}_{\mathrm{B}}=10 \mathrm{~g} \mathrm{~W}_{\mathrm{S}}=100 \mathrm{~g}, \mathrm{~W}_{\mathrm{A}}=90 \mathrm{~g} \quad \mathrm{M}_{\mathrm{B}}=180 \mathrm{~g} / \mathrm{mol} \quad \& \mathrm{~d}=1.2 \mathrm{~g} / \mathrm{m} \mathrm{L}\)
\[
\begin{aligned}
\mathrm{M} \& =\frac{\mathrm{Wt} \% \times \text { density } \times 10}{M o l . w t .} \\
\mathrm{M} \& =\frac{10 \times 1.2 \times 10}{180}=0.66 \mathrm{M} \quad \text { or } \quad 0.66 \mathrm{~mol} / \mathrm{L} \\
\mathrm{~m} \& =\frac{\mathrm{W}_{\mathrm{B}} \times 1000}{\mathrm{M}_{\mathrm{B}} \times \mathrm{W}_{\mathrm{A}}(\mathrm{ing})} \\
\mathrm{m} \& =\frac{10 \times 1000}{180 \times 90} \\
\& =0.61 \mathrm{~m} \quad \text { or } \quad 0.61 \mathrm{~mol} / \mathrm{kg} \quad \text { (or any other suitable method) }
\end{aligned}
\]
\end{tabular} \& 1
1

$1 / 2$
$1 / 2$
1
$1 / 2$
1 <br>
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline 29 \& \begin{tabular}{l}
(a) (i) \(\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+2 \mathrm{OH}^{-} \longrightarrow 2 \mathrm{CrO}_{4}{ }^{2-}+\mathrm{H}_{2} \mathrm{O}\) \\
(ii) \(\mathrm{MnO}_{4}^{-}+4 \mathrm{H}^{+}+3 \mathrm{e}^{-} \longrightarrow \mathrm{MnO}_{2}+2 \mathrm{H}_{2} \mathrm{O}\) \\
(b) (i) \(\mathrm{Zn} / \mathrm{Zn}^{2+}\) has fully filled d orbitals. \\
(ii) This is due to smaller ionic sizes / higher ionic charge and availability of d orbitals. \\
(iii) because \(\mathrm{Mn}^{+2}\) is more stable \(\left(3 \mathrm{~d}^{5}\right)\) than \(\mathrm{Mn}^{3+}\left(3 \mathrm{~d}^{4}\right) . \mathrm{Cr}^{+3}\) is more stable due to \(\mathrm{t}_{2} \mathrm{~g}^{3} / \mathrm{d}^{3}\) configuration.
\end{tabular} \& 1
1
1
1
1 \\
\hline \& Or \& \\
\hline 29 \& \begin{tabular}{l}
(i) \\
(Any two Points) \\
(ii) Cerium \(\left(\mathrm{Ce}^{4+}\right)\) \\
(iii) \(\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-} \longrightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}\) \\
(iv) \(\mathrm{Mn}^{3+}\) is more paramgnetic \\
Because \(\mathrm{Mn}^{3+}\) has 4 unpaired electrons \(\left(3 \mathrm{~d}^{4}\right)\) therefore more paramagnetic whereas \(\mathrm{Cr}^{3+}\) has 3 unpaired electrons \(\left(3 d^{3}\right)\).
\end{tabular} \& 1
1
1
1
1
\(1 / 2\)
\(1 / 2\) \\
\hline 30 \& \begin{tabular}{l}
(a) (i) \\
(ii) \(\mathrm{CH}_{3} \mathrm{CH}=\mathrm{N}-\mathrm{OH}\) \\
(iii) \\
(b) (i) Add neutral \(\mathrm{FeCl}_{3}\) in both the solutions, phenol forms violet colour but benzoic acid does not. \\
(ii) Tollen's reagent test: Add ammoniacal solution of silver nitrate (Tollen's reagent) in both the solutions propanal gives silver mirror whereas propanone does not. (or any other correct test)
\end{tabular} \& 1
1
1

1
1

1
1 <br>
\hline
\end{tabular}

|  | OR |  |
| :---: | :---: | :---: |
| 30 | (a) (i) As Cl acts as electron withdrawing group ( -I effect), $\mathrm{CH}_{3}$ shows +I effect. <br> (ii) The carbonyl carbon atom in carboxylic acid is resonance stabilised. <br> (b) (i) Rosenmund reduction: $\text { Or } \quad \mathrm{RCOCl} \xrightarrow{\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{BaSO}_{4}} \mathrm{RCHO}+\mathrm{HCl} .$ <br> (ii) Cannizzaro's Reaction: <br> Or With bezaldehyde <br> (c) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CO}-\mathrm{CH}_{3}$. | 1 1 1 1 1 1 1 1 1 |


| Sr. <br> No. | Name |  | Sr. <br> No. | Name |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | Dr. (Mrs.) Sangeeta Bhatia |  | 9 | Sh. Partha Sarathi Sarkar |  |
| 2 | Dr. K.N. Uppadhya |  | 10 | Mr. K.M. Abdul Raheem |  |
| 3 | Prof. R.D. Shukla |  | 11 | Mr. Akileswar Mishra |  |
| 4 | Sh. S.K. Munjal |  | 12 | Mrs. Maya George |  |
| 5 | Sh. Rakesh Dhawan |  | 13 | Sh. Virendra Singh Phogat |  |
| 6 | Sh. D.A. Mishra |  | 14 | Dr. (Mrs.) Sunita <br> Ramrakhiani |  |
| 7 | Sh. Deshbir Singh |  | 15 | Ms. Garima Bhutani |  |
| 8 | Ms. Neeru Sofat |  |  |  |  |

