<u>CHEMISTRY MARKING SCHEME</u> <u>OUTSIDE DELHI -2014</u> <u>SET -56/1</u>

Qn	Answers	Marks				
1	Because of differential arrangement of particles in different directions	1				
2	Emulsion – Liquid-liquid colloidal system					
	Eg : milk, vanishing cream (or any other)	1⁄2				
3	Collectors enhance the non-wettability of mineral particles					
	Pine oil, fatty acids, xanthates (any one)	1⁄2				
4	Because of low bond dissociation enthalpy and high electron gain enthalpy with negative sign of	1/2+1/2				
	fluorine					
5	2-propanol / propan-2-ol	1				
6	On heating with NaOH $+I_2$, propan -2 -one forms yellow ppt of iodoform whereas pentan-3-one	1				
	does not.					
7	Homopolymer is fomed by repeating the same monomer unit whereas copolymer is formed by 1					
	repeating two different monomers.					
8	The linkage between two amino acids i.e. – CO-NH – is known as peptide linkage.	1				
9	Anode: $Zn(s) \longrightarrow Zn^{2+} + 2e^{-}$ Cathode: $MnO_2 + NH_4^{+} + e^{-} \longrightarrow MnO(OH) + NH_3$	1/2+1/2				
	Due to the presence of ions in the over all reaction, its voltage decreases with time.	1				
10	Rate of reaction increases with temperature.	1				
	Rate of a reaction nearly doubles with 10^0 rise in temperature / graphical representation.	1				
11	a) Ag with dil NaCN forms a complex i.e. $[Ag(CN)_2]^-$ which dissolves and is subsequently	1				
	reduced by Zn to give sliver	1				
	b) Electrolytic relining – in this method impure metal is made to act as an anode and the pure metal as cathode in a suitable electrolytic bath containing soluble salt of the same metal	1				
	Pure metal is deposited at cathode					
	r die metul 15 deposited al eallode.					

	OR					
11	a) It is based on the principle that the impurities are more soluble in the melt than in the					
	solid state of the metal.					
	b) In this, the metal is converted into its volatile compound which is then decomposed to					
	give pure metal.					
12	a) $5SO_2 + 2MnO_4^- + 2H_2O \rightarrow 5SO_4^{2-} + 2Mn^{2+} + 4H^+$					
	b) $2F_2(g) + 2H_2O(l) \rightarrow 4H^+(aq) + 4F^-(aq) + O_2$					
13	a) Because it undergoes disproportionation reaction / $2Cu^{+}(aq) \rightarrow Cu(s) + Cu^{2+}(aq)$ 1					
	b) Because of the ability of oxygen to form multiple bonds					
14	a) 3-bromoprop–1–ene / 3-bromopropene	1				
	b) Tris-(trichloromethyl)chloromethane					
15	An ambidient nucleophile is that which possesses two nucleophilic centres 1					
	For example CN ⁻ (it forms cyanides and isocyanides)(or any other correct example)1					
16	a) $C_6H_5NH_2 < C_6H_5N(CH_3)_2 < CH_3NH_2 < (C_2H_5)_2 NH$					
	b) $C_6H_5NH_2 > C_6H_5NHCH_3 > C_2H_5NH_2 > (C_2H_5)_2NH$ 1					
17	a) On adding benzene diazonium chloride, aniline forms azo dye whereas ethylamine does					
	not.					
	b) On adding benzene diazonium chloride, aniline forms azo dye whereas benzylamine does 1					
	not.					
18	$CH = CH_2$	1/2+ 1/2				
	$n CH_2 = CH - CH = CH_2 + $					
	a) 1,3 - Butadiene and styrene / 1, 3-Butadiene Styrene					
	b) Hexamethylenediamine and adipic acid / $n HOOC(CH_2)_4COOH + n H_2N (CH_2)_6 NH_2$	1/2+ 1/2				

19	$N_{A} = \frac{Z \times M}{a^{3} \times d}$	1
	$=\frac{2 \times 56 g mol^{-1}}{2 \times 2 m c^{-1}}$	1
	$(2.866x10^{-9})^{-9} cm x 7.874g cm^{-3}$ = 6 04x10 ²³ mol ⁻¹	1
	$\frac{01}{286.65 \times 10^{-10}} = 2.866 \times 10^{-8} \text{ cm}$	
	$280.03 \times 10^{-24} \text{ cm} = 2.800 \times 10^{-24} \text{ cm}^{-3} \text{ m}^{-3} \text{ m}^{-3} \text{ m}^{-3} \text{ m}^{-2} \text{ m}^{-3} \text{ m}^{m$	11⁄2
	Mass of Fe atom = (2.800x10° cm) x7.874g cm $x172 = 25.54x10^{-1} x5.94$ g = 92.59 x 10° g	
	$N_{\rm A} = 500 \text{ mol} / 92.39 \times 10^{-1} \text{ g}$	
	$= 0.04 \times 10^{-10}$ mor	11/2
20	R=200Ω	
	Cell constant = $\frac{l}{a} = 1 \text{ cm}^{-1}$	
	Conductivity, $k = \frac{l}{R} \ge \frac{l}{a} = \frac{1}{200\Omega} \ge cm^{-1}$	1
	$= 5.0 \mathrm{x} \ 10^{-3} \ \Omega^{-1} \ \mathrm{cm}^{-1}$	1
	$^{\wedge} = \frac{K(\text{Scm}^{-1}) \times (1000 \text{ cm}^{3}\text{L}^{-1})}{C(\text{mol}^{-1})}$	
	$=\frac{(5.0 \times 10^{-3} \text{Scm}^{-1}) (1000 \text{cm}^3 \text{L}^{-1})}{0.01 \text{mol } \text{L}^{-1}}$	1
	$= 500 \text{ Scm}^2 \text{ mol}^{-1}$	
		1
21	$Log \frac{k_2}{k_1} = \frac{Ea}{2.303R} \left[\frac{1}{T_1} - \frac{1}{T_2} \right]$	1
	$I_{OG} = \frac{2.39 \times 10^{-7} L/(mol.s)}{Ea} = \frac{Ea}{[1]} = \frac{1}{1}$	
	$2.15 \times 10^{-8} \text{L/(mol.s)}$ 2.303x8.314x10 ⁻³ kJ/Kmol $^{1}650K$ 700K ^J	1
	$Log 11.12 = \frac{Ea}{2.303x8.314x10^{-3} \text{ kJ}} \times \frac{700-650}{4.5x10^5}$	1
	$1.046 = \frac{\text{Ea}}{2.303\text{x}8.314\text{x}10^{-3} \text{ kJ}} \times \frac{700-650}{4.5\text{x}10^5}$	
	$Ea = \frac{1.046x2.303x8.314x10^2x4.5}{50} = 180.16kJ$	

22	Effect of temperature- physisorption decreases with increase of temperature and	1			
	chemisorption first increases then decreases with increase of temperature				
	Surface area – greater the surface area greater is the physisorption and chemisorption				
	In physisorption, no appreciable activation energy is needed. In chemisorption, sometimes				
	high activation energy is needed.				
	OR				
22	(i) Production of high vacuum: The remaining traces of air can be adsorbed by charcoal	1			
	from a vessel evacuated by a vacuum pump to give a very high vacuum.				
	(ii) Heterogeneous catalysis: Adsorption of reactants on the solid surface of the catalysts	1			
	increases the rate of reaction.				
	(iii) Froth floatation process: A low grade sulphide ore is concentrated by separating it				
	from silica and other earthy matter by this method using pine oil and frothing agent	1			
23	a) Due to incomplete filling of d-orbitals	1			
	b) Because energy released in the formation of bond between Co(III) and ligand is more than	1			
	the energy required for the conversion of Co(II) to Co(III).				
	c) Due to comparable energies of 5f, 6d, 7s orbitals	1			
24	a) Trioxalatocobaltate(III)	1/2+1/2			
		1/2+1/2			
	b) Hexacarbonylchromium(0)				

28	a)	
	<i>i</i> – Normal molar mass	
	$= \frac{\text{Observed colligative property}}{\text{Calculated colligative property}}$	1
	Total number of moles of particles after association/dissociation	1
	Number of moles of particles before association/dissociation (any one)	
	i) For dissociation, $i > 1$	1/2
	ii) For association, i < 1	1/2
	b) Reaction	
	$Na_2CO_3 + 2HC1 \longrightarrow 2NaCl + H_2O + CO_2$	
	106g NoHCO, \pm HCl \rightarrow NoCl \pm HcO \pm CO.	
	84g	
	A mixture of 1 mol Na ₂ CO ₃ and 1 mol NaHCO ₃ reacts with 3 mol of HCl	
	1 mol Na_2CO_3 and 1 mol $NaHCO_3 = 106+84 = 190$ g	
	190g mixture reacts completely with 3 mol HCl	
	Mol of HCl that will reacts with $1g =$	
	$\frac{3 \ mol}{190 g} \ge 1 \ g = \frac{3}{190} \ mol = 3x \frac{3x10^3}{190} \ m \ mol$	
	We know that	
	Morality x volume (ml) = no. of m mole	11/2
	$3x10^3$	
	$0.1 \times V_{HCl} = \frac{190}{190}$	1⁄2
	$V_{\rm HCl} = \frac{3x10^3}{190x0.1} = 157.9 \text{ mL}$	1
	OR	
	OK OK	
28	a) i) It is defined as the number of moles of the component to the total number of moles of a	11 1
	the components /	
	Mole fraction of a component =	
	Number of moles of the component	
	Total number of moles of all the components	
	ii) It is defined as the number of moles of the solute per kg of the solvent. /	1

Molality (m) = $\frac{\text{Moles of solute}}{\text{Mass of solvent in kg}}$				1
			iii) According to Raoult's law, the partial pressure of a volatile component or gas is directly proportional to its mole fraction in solution	
		b)	Molar mass Na ₂ SO ₄ .10H ₂ O = $2x23+32+16x4+20x1+16x10=322g \text{ mol}^{-1}$ No. of mol Na ₂ SO ₄ .10H ₂ O dissolved in 01.10kg of water	
			$= \frac{1}{322 gmol^{-1}} = \frac{1}{322} mol$	1⁄2
			Since there is complete dissociation, van't Hom factor, $i = 3$ $\Delta T_f = i K_f m = i x K_f x n_b/w_A$	1
			$-\frac{3x (1.86 \text{ kg mol}) x \frac{6}{322} \text{ mol}}{322} - 1.04 \text{ K}$	-
			- 0.10 kg Ereczing point 273 15K -1 04K = 272 1K	1/2
-	29	a)	i) XeF_2 - linear	1/2+1/2
			ii) XeO ₃ - pyramidal	1/2+1/2
		b)	i) Because sulphur is sterically protected by six F atoms	1
			ii) Bond dissociation enthalpy of F_2 is lower than that of Cl_2 involved in the process.	1
			iii) Bond dissociation enthalpy of HCl is lower than that of HF	1
-			OR	
	29			
		a)		1⁄2
			Catalyst –iron oxide + K_2O + Al_2O_3	1⁄2
			Conditions: low temperature / 700 K and high pressure	1/2+1/2
		b)	i) Bond dissociation enthalpy of S-H bond is lower than that of O-H bond.	1
			ii) Due to small size of N than P, lone pair is readily available for donation in NH_3	1
			whereas in PH ₃ lone pair is delocalized due to larger size of P	
			iii) Because S-S single bond is stronger than O-O single bond.	1

30	a) i) Heptan – 2-one	1			
	ii) 3-phenylprop–2en-1-al				
	b) i) $CH_3 CH_2 OH \xrightarrow{[O]} CH_3 CHO \xrightarrow{OH^-} CH_3 - CH(OH) - CH_2 - CHO$				
	ii) $\xrightarrow{\text{COOH}} \xrightarrow{\text{COOH}} \xrightarrow{\text{COOH}} \xrightarrow{\text{CH}_2\text{OH}} \xrightarrow{\text{CH}_2\text{OH}}$	1			
	iii) $CH_3COCH_3 \xrightarrow{\text{LiAlH}_4} CH_3CH(OH)CH_3 \xrightarrow{Conc. H_3SO_4} CH_3-CH=CH_2$	1			
	(or any other correct method)				
	OR				
30	a) i) CH ₃ -CO-CH ₂ -CH(Cl)-CH ₃	1			
	ii)				
	CO-CH2CH3	1			
	NO ₂				
	b) i) On heating with NaOH + I_2 , ethanal forms yellow ppt of iodoform whereas propagal	1			
		1			
	does not.				
	ii) Phenol gives red or violet ppt. with neutral FeCl ₃ whereas benzoic acid does not (or any	1			
	other test)				
	iii)Acetophenone- On heating with NaOH +I ₂ , forms yellow ppt of iodoform whereas	1			
	Benzaldehyde does not (or any other test)				

Sr.	Name	Sr.	Name	
No.		No.		
1	Dr. (Mrs.) Sangeeta Bhatia	4	Sh. S.K. Munjal	
2	Dr. K.N. Uppadhya	5	Sh. Rakesh Dhawan	
3	Sh. D.A. Mishra	6	Ms. Garima Bhutani	