CHEMISTRY MARKING SCHEME 2015 SET -56/2/1 F

Qn	Value points	Marks
1	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{I}$, because I is a better leaving group.	1/2, 1/2
2	Rhombic sulphur	1
3	3-Methylbut-2-en-1-ol	1
4	$\mathrm{X}_{2} \mathrm{Y}_{3}$	1
5	Because of weak van der Waals' forces in physisorption whereas there are strong chemical forces in chemisorption.	1
6.	i) tris-(ethane-1,2-diamine)chromium(III) chloride ii) $\mathrm{K}_{3}\left[\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]$	
7.	When solute- solvent interaction is stronger than pure solvent or solute interaction. Eg: chloroform and acetone (or any other correct eg) $\Delta \mathrm{mixH}=$ negative OR Azeotropes -binary mixtures having same composition in liquid and vapour phase and boil at constant temperature / is a liquid mixture which distills at constant temperature without undergoing change in composition Maximum boiling azeotropes eg: $\mathrm{HNO}_{3}(68 \%)$ and $\mathrm{H}_{2} \mathrm{O}(32 \%)$ (or any other correct example)	1 $1 / 2$ $1 / 2$ 1 $1 / 2$ $1 / 2$
8.	(i) $\mathrm{CH}_{3} \mathrm{MgBr} / \mathrm{H}_{3} \mathrm{O}^{+}$ (ii) $\mathrm{PCl}_{5} / \mathrm{PCl}_{3} / \mathrm{SOCl}_{2}$	
9.	a) $\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e} \longrightarrow \mathrm{Cu}(\mathrm{s})$ because of high E^{0} value/ more negative $\Delta \mathrm{G}$ b) It states that limiting molar conductivity of an electrolyte is equal to the sum of the individual contributions of cations and anions of the electrolyte. It is used to calculate the $\Lambda \mathrm{m}^{0}$ for weak electrolyte / It is used to calculate α and Kc (Any one application)	$1 / 2,1 / 2$ 1 1

\begin{tabular}{|c|c|c|}
\hline 10 \& \begin{tabular}{l}
a) Due to presence of unpaired d-electrons/ comparable energies of 3d and 4s orbitals. \\
b) Mn , due to involvement of 4 s and 3 d electrons/ presence of maximum unpaired delectrons.
\end{tabular} \& \[
\begin{aligned}
\& \hline 1 \\
\& 1 / 2,1 / 2
\end{aligned}
\] \\
\hline 11 \& \[
\begin{aligned}
\& \Delta \mathrm{T}_{\mathrm{f}}=\mathrm{i} . \mathrm{K}_{\mathrm{f}} \mathrm{~m} \\
\& =\mathrm{i} \mathrm{~K}_{\mathrm{f}} \frac{\mathrm{w}_{\mathrm{B}} \times 1000}{\mathrm{M}_{\mathrm{B}} \times \mathrm{w}_{\mathrm{A}}} \\
\& 2 \mathrm{~K}=\frac{2 \times 1.86 \mathrm{~K} \mathrm{~kg} / \mathrm{mol} \mathrm{x} \mathrm{w}_{\mathrm{B}} \times 1000}{58.5 \mathrm{~g} / \mathrm{mol} \times 37.2 \mathrm{~g}} \\
\& \mathrm{w}_{\mathrm{B}}=1.17 \mathrm{~g}
\end{aligned}
\] \& 1
1
1 \\
\hline 12 \& \begin{tabular}{l}
n \(\mathrm{HOH}_{2} \mathrm{C}-\mathrm{CH}_{2} \mathrm{OH}+\mathrm{n}\) \\
n \\
Ethylene glycol \\
Terephthalic actd (Ethane-1, 2 -diol) \\
(Benzene-1,4-di carboxylic acid) \\
i) \\
ii) \\
Phenol and formaldehyde
\[
\begin{array}{lc}
\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2} \quad \& \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CH}_{2} \\
\text { 1, 3-Butadiene } \& \text { Styrene }
\end{array}
\] \\
iii) \\
(Note: half mark for structure/s and half mark for name/s)
\end{tabular} \& 1

1
1

1

\hline 13 \& | i) Fructose |
| :--- |
| ii) Acidic amino acid has more number of acidic carboxylic group than basic amino group whereas basic amino acid has more number of basic amino group. |
| iii) Vitamin C | \& 1

1
1

\hline 14 \& | a) Impure Ni reacts with CO to form volatile $\mathrm{Ni}(\mathrm{CO})_{4}$ which when heated at higher temperature decomposes to give pure Ni . |
| :--- |
| b) NaCN acts as a leaching agent to form a soluble complex with gold. |
| c) It is a mixture of $\mathrm{Cu}_{2} \mathrm{~S}$ and FeS | \& 1

1
1
1

\hline
\end{tabular}

15	$\begin{aligned} \mathrm{E} \text { cell } & =\mathrm{E}^{0} \text { cell }-\frac{0.059}{\mathrm{n}} V \log \frac{\left[\mathrm{Zn}^{2+}\right]}{\left[\mathrm{H}^{+}\right] 2} \\ \mathrm{E} \text { cell } & =0.76 \mathrm{~V}-\frac{0.059}{2} \mathrm{~V} \log \frac{10^{-3}}{\left(10^{-2}\right) 2} \\ \mathrm{E} \text { cell } & =0.76-0.0295 \mathrm{~V} \log 10 \\ & =0.7305 \mathrm{~V} \end{aligned}$	1 1 1
16	i) Due to coagulation of colloidal clay particles. ii) Because NH_{3} is easily liquefiable than N_{2} due to its larger molecular size. iii) Because of more surface area.	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
17	i) cis- isomer trans-isomer ii) $\quad \mathrm{t}_{2 \mathrm{~g}}{ }^{4}$ iii) dsp^{2}, diamagnetic	1 1 $1 / 2,1 / 2$
18	a) Because they are unable to form H -bonds with water molecules. b) Because of the presence of chiral carbon in butan-2-ol. c) Due to dominating $+R$ effect	1
19		1 1 1 1
	i) ii) iii)	1 1

\begin{tabular}{|c|c|c|}
\hline 20 \& i) \begin{tabular}{l}
Because oxygen stabilizes Mn more than F due to multiple bonding \\
ii) \\
Because of their ability to show variable oxidation state(or any other correct reason) \\
iii) \(3 \mathrm{MnO}_{4}{ }^{2-}+4 \mathrm{H}^{+} \longrightarrow 2 \mathrm{MnO}_{4}{ }^{-}+\mathrm{MnO}_{2}+2 \mathrm{H}_{2} \mathrm{O}\)
\end{tabular} (\& \[
\begin{aligned}
\& 1 \\
\& 1 \\
\& 1
\end{aligned}
\] \\
\hline 21 \& \begin{tabular}{l}
i) \(\quad \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\) \\
ii) \\
iii) \(\mathrm{CH}_{3} \mathrm{CHO}\)
\end{tabular} \& 1
1
1 \\
\hline 22 \& \[
\begin{aligned}
\& \mathrm{d}=\frac{\mathrm{ZxM}}{\mathrm{Na}_{\mathrm{a} ~}{ }^{3}} \\
\& 6.23 \mathrm{~g} \mathrm{~cm}^{-3}=\frac{\mathrm{zx} 60 \mathrm{~g} / \mathrm{mol}}{6.022 \times 10^{23} \mathrm{~mol}^{-1} \times(4 \times 10-8 \mathrm{~cm})^{3}} \\
\& \mathrm{z}=4 \\
\& \mathrm{fcc}
\end{aligned}
\] \& \begin{tabular}{l}
\[
1 / 2
\] \\
\(1 / 2\) \\
1 \\
1
\end{tabular} \\
\hline 23 \& \begin{tabular}{l}
a) Concern for students health, Application of knowledge of chemistry to daily life, empathy , caring or any other \\
b) Through posters, nukkad natak in community, social media, play in assembly (or any other relevant answer) \\
c) Wrong choice and overdose may be harmful \\
d) Aspartame, saccharin (or any other correct example)
\end{tabular} \& \[
\begin{aligned}
\& 1 / 2,1 / 2 \\
\& 1 \\
\& 1 \\
\& 1 / 2+1 / 2
\end{aligned}
\] \\
\hline 24 \& \begin{tabular}{l}
a)i) Activation energy- Extra energy required by reactants to form activated complex. \\
ii) Rate constant- rate of reaction when the concentration of reactant is unity. \\
b)
\[
\begin{aligned}
\& \mathrm{k}=\frac{2.303}{\mathrm{t}} \log \frac{\left[\mathrm{~A}_{0}\right]}{[\mathrm{A}]} \\
\& \mathrm{k}=\frac{2.303}{10 \mathrm{~min}} \log \frac{100}{75} \\
\& \mathrm{k}=\frac{2.303 \times 0.125}{10 \mathrm{~min}}
\end{aligned}
\]
\end{tabular} \& 1
1

$11 / 2$

$1 / 2$

\hline
\end{tabular}

26
Reaction of secondary amine

