CHEMISTRY MARKING SCHEME 2015 <u>SET -56/2/1 F</u>

Qn	Value points	Marks
1	CH ₃ CH ₂ I, because I is a better leaving group.	1/2 , 1/2
2	Rhombic sulphur	1
3	3-Methylbut-2-en-1-ol	1
4	X_2Y_3	1
5	Because of weak van der Waals' forces in physisorption whereas there are strong chemical forces in chemisorption.	1
6.	i) tris-(ethane-1,2-diamine)chromium(III) chloride	1
	ii) K ₃ [Cr(C ₂ O ₄) ₃]	1
7.	When solute- solvent interaction is stronger than pure solvent or solute interaction.	1
	Eg: chloroform and acetone (or any other correct eg)	1/2
	ΔmixH= negative	1/2
	OR	
7.	Azeotropes -binary mixtures having same composition in liquid and vapour phase and boil at	1
	constant temperature / is a liquid mixture which distills at constant temperature without	
	undergoing change in composition	1/2
	Maximum boiling azeotropes	1/2
	eg: HNO_3 (68%) and $H_2O(32\%)$ (or any other correct example)	
8.	(i) CH ₃ MgBr/ H ₃ O ⁺	1
	(ii) PCl ₅ / PCl ₃ / SOCl ₂	1
9.	a) Cu^{2+} (aq) + 2 e \longrightarrow $Cu(s)$ because of high E^0 value/ more negative ΔG	1/2 , 1/2
	b) It states that limiting molar conductivity of an electrolyte is equal to the sum of the individual	1
	contributions of cations and anions of the electrolyte.	
	It is used to calculate the Λm^0 for weak electrolyte / It is used to calculate α and Kc	
	(Any one application)	1

10	, 1				
	b) Mn, due to involvement of 4s and 3d electrons/ presence of maximum unpaired d-				
11	electrons. $\Delta T_f = i. K_f m$				
11					
	$= i K_f W_B \times 1000$				
	$M_B x w_A$				
	$2K = 2 \times 1.86K \text{ kg/mol } \times \text{w}_{B} \times 1000$	1			
	58.5 g/mol x 37.2 g				
	$w_B = 1.17g$	1			
12	n HOH ₂ C - CH ₂ OH + n HOOC—COOH				
	Ethylene glycol Terephthalic acid				
	(Ethane-1, 2 - diol) (Benzene-1,4 - di	1			
	i) carboxylic acid)				
	ОН				
	Ĭ				
	+CH ₂ O	1			
	ii)				
	Phenol and formaldehyde				
	$CH_2 = CH - CH = CH_2 + C_6H_5CH = CH_2$				
	G:	1			
	1, 3-Butadiene Styrene				
	(Note: half mark for structure/s and half mark for name/s)				
12		1			
13	i) Fructoseii) Acidic amino acid has more number of acidic carboxylic group than basic amino	1			
	group whereas basic amino acid has more number of basic amino group.				
	iii) Vitamin C	1			
14	a) Impure Ni reacts with CO to form volatile Ni(CO) ₄ which when heated at higher	1			
	temperature decomposes to give pure Ni.				
	b) NaCN acts as a leaching agent to form a soluble complex with gold.	1			
	c) It is a mixture of Cu ₂ S and FeS	1			

15	$E \text{ cell} = E^0 \text{ cell} - \frac{0.059}{n} V \log \frac{[\text{Zn}^{2+}]}{[\text{H}^+]^2}$	1	
	E cell = $0.76 \text{ V} - \frac{0.059}{2} \text{ V log} = \frac{10^{-3}}{(10^{-2})2}$	1	
	E cell = $0.76 - 0.0295$ V log 10	1	
	= 0.7305 V	1	
16			
10	 i) Due to coagulation of colloidal clay particles. ii) Because NH₃ is easily liquefiable than N₂ due to its larger molecular size. 	$\begin{vmatrix} 1 \\ 1 \end{vmatrix}$	
	iii) Because of more surface area.		
	my Because of more surface area.	1	
17	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	
	ii) _f 4	1	
	$ ho_{2\mathrm{g}}$	1/2, 1/2	
	iii) dsp ² , diamagnetic		
18	a) Because they are unable to form H-bonds with water molecules.b) Because of the presence of chiral carbon in butan-2-ol.	$\begin{vmatrix} 1 \\ 1 \end{vmatrix}$	
	c) Due to dominating +R effect	1	
19	i) C ₆ H ₅ COOH <u>PCl</u> C ₆ H ₅ COCl H ₂ /Pd C ₆ H ₅ CHO	1	
	BaSO_4		
	ii) $CH = CH + H_2O $ Hg^{2+}/H_2SO_4 CH_3CHO	1	
	iii) CH ₃ COOH NaOH CH ₃ COONa NaOH + CaO, heat CH ₄	1	
	OR		
19.	OR $RCN + SnCl_2 + HCl \longrightarrow RCH = NH \xrightarrow{H_3 \stackrel{\leftarrow}{O}} RCHO$	1	
19.	$RCN + SpCl_a + HCl \longrightarrow RCH = NH \xrightarrow{H_3 \circ } RCHO$		

20	i) Because oxygen stabilizes Mn more than F due to multiple bonding	1
	ii) Because of their ability to show variable oxidation state(or any other correct reason)	1
	iii) $3MnO_4^{2-} + 4H^+ \longrightarrow 2MnO_4^{-} + MnO_2 + 2H_2O$	1
21	i) CH ₃ CH ₂ CH ₂ OH	1
	OH Br D.	
	Br	
		1
	ii) Br	
	iii) CH₃CHO	1
22	$d = \frac{Z \times M}{N_a \times a^3}$	1/2
	$6.23 \text{ g cm}^{-3} = \frac{\text{z x 60 g/mol}}{6.022 \text{x} 10^{23} mol^{-1} x (4 x 10 - 8 cm)^3}$	1/2
	z=4	1
	fcc	1
23	a) Concern for students health, Application of knowledge of chemistry to daily life, empathy	1/2 , 1/2
	, caring or any otherb) Through posters, nukkad natak in community, social media, play in assembly (or any other	
	relevant answer)	1
	c) Wrong choice and overdose may be harmful	1
	d) Aspartame, saccharin (or any other correct example)	1/2+ 1/2
24	a)i) Activation energy- Extra energy required by reactants to form activated complex.	1
	ii) Rate constant- rate of reaction when the concentration of reactant is unity.	1
	in, rate constant rate of reaction when the concentration of reaction is unity.	
	b)	
	1-2202 log [A]	1/2
	$k = \underbrace{2.303}_{t} \log \left[\underbrace{A_0}_{A} \right]$,2
	·	
	$k = 2.303 \cdot \log 100$	1/2
	10 min 75	
	$k = 2.303 \times 0.125$	
	10 min	

	$k = 0.02879 \text{ min}^{-1}$	1
	$t_{1/2} = \frac{0.693}{k} = \frac{0.693}{0.02879 min^{-1}}$	
	$t_{1/2} = 24.07 min$	1
	OR	
24.	a) i)First order ii) -k iii) s ⁻¹	
	b)	1,1,1
	$t = \frac{2.303}{k} \log \frac{[R]0}{[R]}$	
	$t_{99\%} = \frac{2.303}{k} \log \frac{100}{1}$	
		1/2
	$t = \frac{2.303}{k} \times 2$	
	$t_{90\%} = \frac{2.303}{k} \log \frac{100}{10}$	
	$=\frac{2.303}{k}$	1/2
	"	
	$t_{99\%} = 2 \times t_{90\%}$	1
25	a) i)Because of lone pair in NH ₃ , lone pair-bond pair repulsion decreases the bond angle	1
	ii)Because of absence of H-bonding in H ₂ S	1
	iii)Because stability of +4 oxidation state increases from SO ₂ to TeO ₂	1
	P O OH	1,1
	b) $H_4P_2O_7$	
	OR	

b)reaction of primary amine 1 (soluble in alkali) Reaction of secondary amine (insoluble in alkali) Tertiary amine doesn't react OR 26. 1 a) i) 1 Br ii) $\frac{+}{N_2}Cl$ 1/2, 1/2, NH_2 1/2 b) i) A-B-C-1/2 ,1/2, CH₃CN CH₃CH₂OH ii) A-B-CH₃CH₂NH₂ 1/2

Sr. Name	Sr. Name	
----------	----------	--

No.		No.	