CHEMISTRY MARKING SCHEME DELHI -2014 SET -56/1/1

Qn	Answers	Marks
1	Oil in water : milk / vanishing cream (any one)	1/2
	Water in oil : butter / cold cream (any one)	1⁄2
2	Hydrogen / Iron	1
3	$[Co(en)_3]^{3+}$: because (en) is a chelating ligand / bidentate ligand	1/2, 1/2
4	3-hydroxybutanoic acid / 3-hydroxybutan-1-oic acid	1
5	o – nitrophenol	1
6.	Solutions with sameosmotic pressure	1
7.	C ₆ H ₅ NH ₂ <(C ₂ H ₅) ₂ NH< C ₂ H ₅ NH ₂	1
8.	Amylose	1
9.	$d=11.2 \text{ g/cm}^3$	
	z=4	
	$a=4x10^{-8}$ cm	
	$d = \frac{Z \times M}{N_a \times a^3}$	1⁄2
	$11.2 = \frac{4 \text{ x } \text{ M}}{6.022 \text{ x} 10^{23}} \text{x} (4 \text{ x} 10^{-8})^3$	1
	$M = \frac{11.2 \times 6.022 \times 10^{23} x}{4} \frac{4 \times 10^{-8} \times 4 \times 10^{-8} \times 4 \times 10^{-8}}{4}$	
	$M = 11.2 \times 6.022 \times 16 \times 10^{-1}$	
	$M = 107.9 \text{gmol}^{-1} \text{ or } 107.9 \text{ u}$	1⁄2
10	 (i) Schottky defect (ii) Decreases (iii Alkali metal halides/ Ionic substances having almost similar size of cations and anions (NaCl/KCl) 	1 1⁄2 1⁄2
11	$\Delta T_{\rm f} = \frac{K_{\rm fxw_2x1000}}{w_1xM_2}$	1/2
	$0.48 \text{K} = 5.12 \text{Kkgmol}^{-1} \text{x} \frac{\text{W}_2}{75 \text{ x} 256} \text{x} \ 1000$	1
	$\mathbf{w}_2 = \frac{0.48 \times 75 \times 256}{5.12 \times 1000}$	
	$w_2 = 1.8g$	1⁄2

12	Solutions which obey Raoult's law over the entire range of concentration	1
	A-A or B-B ~A-B interactions	
	$\Delta H_{mix} = 0$	
	$\Delta V_{mix} = 0$	1
	(any one)	
13	(i) Order of reaction is meant for elementary as well as for complex reactions but molecularity is	1
	for elementary reactions.	
	(ii) Order can be zero or fraction but molecularity cannot be zero or fraction. (or any other difference)	1
14	(i) Impurities are more soluble in melt than in solid state of the metal.	1
	(ii) Different components of a mixture are differently adsorbed on an adsorbent	1
15	(i) $Ca_3 P_2 + 6H_2O \rightarrow 3Ca(OH)_2 + 2PH_3$	1
	(ii) $Cu + 2H_2 SO_4 \rightarrow CuSO_4 + 2H_2O + SO_2$	1
	(give full credit even if correct products are mentioned)	
	OR	
15	(i) $HI < HBr < HCl < HF$	1
	(ii) $H_2O < H_2S < H_2Se < H_2Te$	1
16	(i) Tetraamminedichloridochromium (III) ion	1
	(ii) Geometrical isomerism / cis – trans	1
17	(i) (b) is chiral OR	1
	(a) undergoes faster S _N 2	
	(ii) (a) S _N 2	1/2, 1/2
	(b) S _N 1	
18		1
	(ii) \sim CH ₂ – CH ₂ – CH ₂ – CH ₂ Br	1
19	(a) $\frac{x}{m} = Kp \frac{1}{n}$ or $\log (x/m) = \log K + \frac{1}{n} \log p$	1
	(b) Reversible in nature/ stable sol/ solvent loving (or any other)	1
	(c) Associated colloid – Soap/ micelles; Multimolecular colloid - S ₈ / gold sol. (or any other)	1/2, 1/2
20	a) (i) (ii)	
		1+1

	b) White phosphorus	Red phosphorus			
	It exists as discrete tetrahedral P4unit	It exists in the form of polymeric chain.	1		
	OR correct structures.		-		
21	(i) Because +5 oxidation state is more covalent than +3/ high charge to size ratio / high				
	polarizing power				
	(ii) Because HCl is a mild oxidising agent/ formation of hydrogen gas prevents the formation of				
	FeCl ₃ .				
	(iii) Because of resonance in O ₃ molecule.				
22	$SO_2 Cl_2 \rightarrow SO_2 + Cl_2$				
	At $t = 0$ s0.4 atm 0 atm0 atm				
	At $t = 100s$ (0.4 – x) atm	x atm x atm			
	Pt = 0.4 - x + x + x				
	Pt = 0.4 + x				
	0.7 = 0.4 + x				
	x = 0.3				
	$k = \frac{2.303}{t} \log \frac{p_i}{2p_i - p_t}$		1		
	$k = \frac{2.303}{t} \log \frac{0.4}{0.8 - 0.7}$				
	$k = \frac{2.303}{100} \log \frac{0.4}{0.1}$		1		
	$k = \frac{2.303}{100} \ge 0.6021 = 1.39 \ge 10^{-2} s^{-1}$		1		
23	(a) carbohydrates, lipids, proteins, enzymes, nucl	eic acids (any two)	1/2, 1/2		
	(b) Antiseptics are the chemical substances which	n are used to kill or prevent the growth of			
	microbes. Eg – Dettol / Iodoform / Boric acid/ phenol (or any other correct example)				
	(c) Becasuse it is unstable at cooking temperatur	e.	1		
24	(a) Vitamin A		1		
	(b) Uracil		1		
	(c) It suggests that six carbon atoms are in straight	nt chain / CHO – (CHOH)4 – CH2OH	1		
25	(i) Concern towards environment / caring / social	ly aware / team work. (atleast two values)	1		
	(ii) Polymers which can be degraded by the actio	n of microorganisms. Eg. PHBV, Nylon -2-	1		
	nylon- 6/ any natural polymer				
	(iii) Addition polymer.		1		

28 (a) (i) Limiting molar conductivity – when concentration approches zero the conductivity is 1 known as limiting molar conductivity (ii) Fuel cell – are the cells which convert the energy of combustion of fuels to electrical energy. 1 (b) Cell constant = G^* = conductivity × resistance = $1.29 \text{ S/m} \times 100 \Omega = 129 \text{ m}^{-1} = 1.29 \text{ cm}^{-1}$ 1 Conductivity of 0.02 mol L⁻¹ KCl solution = cell constant / resistance $\kappa = \frac{G}{R} = \frac{129 \text{ m}^{-1}}{520 \Omega} = 0.248 \text{ S} \text{ m}^{-1} = 0.248 \text{ x} 10^{-2} \text{ S} \text{ cm}^{-1}$ 1 Concentration = 0.02 mol L⁻¹ $= 1000 \times 0.02 \text{ mol m}^{-3}$ $= 20 \text{ mol } \text{m}^{-3}$ Molar conductivity = $A_m = \frac{\kappa}{c}$ $= \frac{248 \times 10^{-3} \text{ S m}^{-1}}{20 \text{ mol m}^{-3}}$ $= 124 \times 10^{-4} \text{ S m}^2 \text{mol}^{-1} = 124 \text{ S cm}^2 \text{ mol}^{-1}$ 1 OR 28 (a) The amount of substance deposited at any electrode during electrolysis is directly 1 proportional to the quantity of electricity passed through the electrolyte. (aq. Solution or melt) Charge = Q = 2F1 (b) E cell = E⁰ cell - $\frac{0.059}{n}$ log $\frac{[Mg^{2+}]}{[Cu^{2+}]}$ 1 $\frac{1}{2}$ E cell = $2.71 - \frac{0.059}{2} \log \frac{0.10}{0.01}$ $E \text{ cell} = 2.71 - \frac{0.059}{2} \log 10$ $\frac{1}{2}$ 1 = 2.71 - 0.0295 = 2.68 V (a) (i) $2MnO_2 + 4KOH + O_2 \rightarrow 2K_2MnO_4 + 2H_2O$ 29 1 (ii) $2Na_2CrO_4 + 2 H^+ \rightarrow Na_2Cr_2O_7 + 2 Na^+ + H_2O$ 1 1 (b) (i) Because of $3d^{5}$ (half filled) stable configuration of Mn^{2+}

	(ii) Because in zinc there is no unpaired electron / there is no contribution from the inner d	1
	(iii) Because of comparable energies of 7s 6d and 5f orbitals	1
	(iii) because of comparable chergies of 7s, ou and 51 orbitals	1
	UR	
29	(i) Mn, because of presence of 5 unpaired electrons in 3d subshell	$\frac{1}{2} + \frac{1}{2}$
	(ii) Cu, because enthalpy of atomization and ionisation enthalpy is not compensated by enthalpy	$\frac{1}{2} + \frac{1}{2}$
	of hydration.	1/ 1/
	(iii) Mn^{3+} , because Mn^{2+} is more stable due to its half filled (3d ⁵)configuration	$\frac{1}{2} + \frac{1}{2}$
	(iv) $Eu^{+2}(Eu)$	
	(v) $MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$	
30	(a)	
	(i)	
		1
	N-OH	
	(11)	1
	CH,OH + COONa	
	(iii) Cl - CH ₂ - COOH	
		1
	(b) (i) Add NaHCO ₃ , benzoic acid will give brisk effervescence whereas benzaldehyde will not	
	give this test. (or any other test)	1
	(ii) Add tollen's reagent propagal will give silver mirror whereas propagone will not give this	
	(i) red tohen's redgent, propandi will give silver inition whereas propanone will not give this	1
	UR	
30	(a) (i) Because the positive charge on carbonyl carbon of CH_3 CHO decreases to a lesser extent	1
	due to one electron releasing(+I effect) CH ₃ group as compared to CH ₃ COCH ₃ (two electron	
	releasing CH ₃ group) and hence more reactive.	
	(ii) Because carboxylate ion (conjugate base) is more resonance stablized than phenoxide ion.	1
	(b) (i)	
L	1	1

Sr.	Name	Sr.	Name
1	Dr. (Mrs.) Sangeeta Bhatia	9	Sh. Partha Sarathi Sarkar
2	Dr. K.N. Uppadhya	10	Mr. K.M. Abdul Raheem
3	Prof. R.D. Shukla	11	Mr. Akileswar Mishra
4	Sh. S.K. Munjal	12	Mrs. Maya George
5	Sh. Rakesh Dhawan	13	Sh. Virendra Singh Phogat
6	Sh. D.A. Mishra	14	Dr. (Mrs.) Sunita Ramrakhiani
7	Sh. Deshbir Singh	15	Ms. Garima Bhutani
8	Ms. Neeru Sofat		