CHEMISTRY MARKING SCHEME

DELHI -2014

SET -56/1/1

Qn	Answers	Marks
1	Oil in water : milk / vanishing cream (any one) Water in oil : butter / cold cream (any one)	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$
2	Hydrogen / Iron	1
3	$\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$: because (en) is a chelating ligand / bidentate ligand	$1 / 2,1 / 2$
4	3-hydroxybutanoic acid / 3-hydroxybutan-1-oic acid	1
5	o - nitrophenol	1
6.	Solutions with sameosmotic pressure	1
7.	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}<\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH}<\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}$	1
8.	Amylose	1
9.	$\begin{aligned} & \mathrm{d}=11.2 \mathrm{~g} / \mathrm{cm}^{3} \\ & \mathrm{z}=4 \\ & \mathrm{a}=4 \times 10^{-8} \mathrm{~cm} \\ & \mathrm{~d}=\frac{\mathrm{ZxM}}{\mathrm{~N}_{\mathrm{a}} \times \mathrm{a}^{3}} \\ & 11.2=\frac{4 \times \mathrm{M}}{6.022 \times 10^{23}} \times\left(4 \times 10^{-8}\right)^{3} \\ & \mathrm{M}=\frac{11.2 \times 6.022 \times 10^{23} \times}{4} \frac{4 \times 10^{-8} \times 4 \times 10^{-8} \times 4 \times 10^{-8}}{4} \\ & \mathrm{M}=11.2 \times 6.022 \times 16 \times 10^{-1} \\ & \mathrm{M}=107.9 \mathrm{gmol}^{-1} \text { or } 107.9 \mathrm{u} \end{aligned}$	$1 / 2$ 1 $1 / 2$
10	(i) Schottky defect (ii) Decreases (iii Alkali metal halides/ Ionic substances having almost similar size of cations and anions ($\mathrm{NaCl} / \mathrm{KCl}$)	$\begin{aligned} & 1 \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$
11	$\begin{aligned} & \Delta \mathrm{T}_{\mathrm{f}}=\frac{\mathrm{K}_{\mathrm{f} \times \mathrm{w}_{2} \times 1000}}{\mathrm{w}_{1} \times \mathrm{M}_{2}} \\ & 0.48 \mathrm{~K}=5.12 \mathrm{Kkgmol}^{-1} \times \frac{\mathrm{W}_{2}}{75 \times 256} \times 1000 \\ & \mathrm{w}_{2}=\frac{0.48 \times 75 \times 256}{5.12 \times 1000} \\ & \mathrm{w}_{2}=1.8 \mathrm{~g} \end{aligned}$	$1 / 2$ 1 $1 / 2$

12	Solutions which obey Raoult's law over the entire range of concentration A-A or B-B $\sim \mathrm{A}-\mathrm{B}$ interactions $\begin{gathered} \Delta \mathrm{H}_{\text {mix }}=0 \\ \Delta \mathrm{~V}_{\text {mix }}=0 \\ (\text { any one }) \end{gathered}$	
13	(i) Order of reaction is meant for elementary as well as for complex reactions but molecularity is for elementary reactions. (ii) Order can be zero or fraction but molecularity cannot be zero or fraction. (or any other difference)	
14	(i) Impurities are more soluble in melt than in solid state of the metal. (ii) Different components of a mixture are differently adsorbed on an adsorbent	
15	(i) $\mathrm{Ca}_{3} \mathrm{P}_{2}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 3 \mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{PH}_{3}$ (ii) $\mathrm{Cu}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CuSO}_{4}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{2}$ (give full credit even if correct products are mentioned)	
	OR	
15	(i) $\mathrm{HI}<\mathrm{HBr}<\mathrm{HCl}<\mathrm{HF}$ (ii) $\mathrm{H}_{2} \mathrm{O}<\mathrm{H}_{2} \mathrm{~S}<\mathrm{H}_{2} \mathrm{Se}<\mathrm{H}_{2} \mathrm{Te}$	
16	(i) Tetraamminedichloridochromium (III) ion (ii) Geometrical isomerism / cis - trans	
17	(i) (b) is chiral OR (a) undergoes faster $\mathrm{S}_{\mathrm{N}} 2$ (ii) (a) $\mathrm{S}_{\mathrm{N}} 2$ (b) $\mathrm{S}_{\mathrm{N}} 1$	1 $1 / 2,1 / 2$
18	(i) (ii)	1 1
19	(a) $\frac{x}{m}=\mathrm{Kp}^{1 / \mathrm{n}} \quad$ or $\quad \log (\mathrm{x} / \mathrm{m})=\log \mathrm{K}+1 / \mathrm{n} \log \mathrm{p}$ (b) Reversible in nature/ stable sol/ solvent loving (or any other) (c) Associated colloid - Soap/ micelles;Multimolecular colloid - $\mathrm{S}_{8} /$ gold sol. (or any other)	$\begin{aligned} & 1 \\ & 1 \\ & 1 / 2,1 / 2 \end{aligned}$
20	a) (i) (ii)	1+1

	b) White phosphorus	Red phosphorus	
	It exists as discrete tetrahedral P_{4} unit	It exists in the form of polymeric chain.	1
	OR correct structures.		
21	(i) Because +5 oxidation state is more covalent than $+3 /$ high charge to size ratio / high polarizing power (ii) Because HCl is a mild oxidising agent/ formation of hydrogen gas prevents the formation of FeCl_{3}. (iii) Because of resonance in O_{3} molecule.		1 1
22	$\begin{aligned} & \mathrm{SO}_{2} \mathrm{Cl}_{2} \rightarrow \mathrm{SO}_{2}+\mathrm{Cl}_{2} \\ & \mathrm{Att}=0 \mathrm{~s} 0.4 \mathrm{~atm} \quad 0 \mathrm{~atm} 0 \mathrm{~atm} \\ & \mathrm{Att}=100 \mathrm{~s} \quad(0.4-\mathrm{x}) \mathrm{atm} \\ & \mathrm{Pt}=0.4-\mathrm{x}+\mathrm{x}+\mathrm{x} \\ & \mathrm{Pt}=0.4+\mathrm{x} \\ & 0.7=0.4+\mathrm{x} \\ & \mathrm{x}=0.3 \\ & \mathrm{k}=\frac{2.303}{\mathrm{t}} \log \frac{p_{i}}{2 p_{i}-p_{t}} \\ & \mathrm{k}=\frac{2.303}{\mathrm{t}} \quad \log \frac{0.4}{0.8-0.7} \\ & \mathrm{k}=\frac{2.303}{100} \quad \log \frac{0.4}{0.1} \\ & \mathrm{k}=\frac{2.303}{100} \times 0.6021=1.39 \times 10^{-2} \mathrm{~s}^{-1} \end{aligned}$		1
23	(a) carbohydrates, lipids, proteins, enzymes, nucleic acids (any two) (b) Antiseptics are the chemical substances which are used to kill or prevent the growth of microbes. Eg - Dettol / Iodoform / Boric acid/ phenol (or any other correct example) (c) Becasuse it is unstable at cooking temperature.		$1 / 2,1 / 2$ $1 / 2,1 / 2$ 1
24	(a) Vitamin A (b) Uracil (c) It suggests that six carbon atoms are in straight chain / $\mathrm{CHO}-(\mathrm{CHOH})_{4}-\mathrm{CH}_{2} \mathrm{OH}$		
25	(i) Concern towards environment / caring / socially aware / team work. (atleast two values) (ii) Polymers which can be degraded by the action of microorganisms. Eg. PHBV , Nylon -2-nylon- 6 / any natural polymer (iii) Addition polymer.		

\begin{tabular}{|c|c|c|}
\hline 26 \& \begin{tabular}{l}
(a) \(\mathrm{HBr} \rightarrow \mathrm{H}^{+}+\mathrm{Br}^{-}\)
\[
\mathrm{CH}_{5} \stackrel{+}{\mathrm{CH}_{2}} \xrightarrow{\mathrm{Br}^{-}} \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{Br}
\] \\
Or \\
\(\left(\right.\) where \(\left.\mathrm{R}=-\mathrm{CH}_{3}\right)\) \\
(b)
\end{tabular} \& \(1 / 2\)
\(1 / 2\)
1
1

1

\hline 27 \& | (a) $\mathrm{CH}_{3} \mathrm{Br} \xrightarrow{\mathrm{KCN}} \mathrm{CH}_{3} \mathrm{CN} \xrightarrow[\text { A }]{\mathrm{LiAlH}_{4}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2} \xrightarrow[\text { B }]{\mathrm{CNO}_{3}}{\underset{2}{273 \mathrm{~K}}}_{\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}}^{C}$ |
| :--- |
| (b) $\underset{\Delta}{\mathrm{CH}_{3} \mathrm{COOH}}$ A $\xrightarrow{\mathrm{NH}_{3}} \mathrm{CH}_{3} \mathrm{CONH}_{2} \xrightarrow{\mathrm{KOH}} \xrightarrow{\mathrm{Br}_{2}} \underset{\mathrm{NaOH}}{\mathrm{CH}_{3} \mathrm{NH}_{2}} \xrightarrow{\mathrm{CHCl}_{3}} \mathrm{CH}_{3} \mathrm{NC}$ | \& | $\begin{aligned} & 1 / 2+1 / 2 \\ & +1 / 2 \end{aligned}$ |
| :--- |
| $1 / 2+1 / 2$ |
| $+\frac{1}{2}$ |

\hline \& OR \&

\hline 27 \& | (i) |
| :--- |
| (ii) $\mathrm{CH}_{3} \mathrm{COOH} \xrightarrow[\mathrm{NH}_{3}]{\longrightarrow} \mathrm{CH}_{3} \mathrm{CONH}_{2} \xrightarrow[+\mathrm{KOH}]{\mathrm{Br}_{2}} \mathrm{CH}_{3} \mathrm{NH}_{2}$ |
| (iii) |
| (Or by any other suitable method.) | \& 1

1
1
1

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline 28 \& \begin{tabular}{l}
(a) (i) Limiting molar conductivity - when concentration approches zero the conductivity is known as limiting molar conductivity \\
(ii) Fuel cell - are the cells which convert the energy of combustion of fuels to electrical energy. \\
(b)
\[
\begin{aligned}
\& \text { Cell constant }=G^{*}=\text { conductivity } \times \text { resistance } \\
\& =1.29 \mathrm{~S} / \mathrm{m} \times 100 \Omega=129 \mathrm{~m}^{-1}=1.29 \mathrm{~cm}^{-1}
\end{aligned}
\] \\
Conductivity of \(0.02 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{KCl}\) solution \(=\) cell constant \(/\) resistance
\[
\kappa=\frac{G^{*}}{R}=\frac{129 \mathrm{~m}^{-1}}{520 \Omega}=0.248 \mathrm{~s} \mathrm{~m}^{-1}=0.248 \times 10^{-2} \mathrm{Scm}^{-1}
\]
\[
\begin{aligned}
\text { Concentration }= \& 0.02 \mathrm{~mol} \mathrm{~L}^{-1} \\
\& =1000 \times 0.02 \mathrm{~mol} \mathrm{~m}^{-3} \\
\& =20 \mathrm{~mol} \mathrm{~m}^{-3}
\end{aligned}
\]
\[
\begin{aligned}
\text { Molar conductivity } \& =\Lambda_{m}=\frac{\kappa}{c} \\
\& =\frac{248 \times 10^{-3} \mathrm{~S} \mathrm{~m}^{-1}}{20 \mathrm{~mol} \mathrm{~m}^{-3}} \\
\& =124 \times 10^{-4} \mathrm{~S} \mathrm{~m}^{2} \mathrm{~mol}^{-1}=124 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}
\end{aligned}
\]
\end{tabular} \& 1
1
1
1
1
1
1 \\
\hline \& OR \& \\
\hline 28 \& \begin{tabular}{l}
(a) The amount of substance deposited at any electrode during electrolysis is directly proportional to the quantity of electricity passed through the electrolyte. (aq. Solution or melt) \\
Charge \(=\mathrm{Q}=2 \mathrm{~F}\) \\
(b) E cell \(=\mathrm{E}^{0}\) cell \(-\frac{0.059}{\mathrm{n}} \log \frac{\left[\mathrm{Mg}^{2+}\right]}{\left[\mathrm{Cu}^{2+}\right]}\) \\
E cell \(=2.71-\frac{0.059}{2} \log \frac{0.10}{0.01}\) \\
E cell \(=2.71-\frac{0.059}{2} \log 10\)
\[
=2.71-0.0295=2.68 \mathrm{~V}
\]
\end{tabular} \& 1
1
1
1
\(1 / 2\)

$1 / 2$
1

\hline 29 \& | (a) (i) $2 \mathrm{MnO}_{2}+4 \mathrm{KOH}+\mathrm{O}_{2} \rightarrow 2 \mathrm{~K}_{2} \mathrm{MnO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$ |
| :--- |
| (ii) $2 \mathrm{Na}_{2} \mathrm{CrO}_{4}+2 \mathrm{H}^{+} \rightarrow \mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+2 \mathrm{Na}^{+}+\mathrm{H}_{2} \mathrm{O}$ |
| (b) (i) Because of $3 \mathrm{~d}^{5}$ (half filled) stable configuration of Mn^{2+} | \& 1

1
1

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
(ii) Because in zinc there is no unpaired electron / there is no contribution from the inner d electrons. \\
(iii) Because of comparable energies of 7s, 6d and 5 f orbitals
\end{tabular} \& \\
\hline \& OR \& \\
\hline 29 \& \begin{tabular}{l}
(i) Mn , because of presence of 5 unpaired electrons in 3d subshell \\
(ii) Cu , because enthalpy of atomization and ionisation enthalpy is not compensated by enthalpy of hydration. \\
(iii) \(\mathrm{Mn}^{3+}\), because \(\mathrm{Mn}^{2+}\) is more stable due to its half filled \(\left(3 \mathrm{~d}^{5}\right)\) configuration \\
(iv) \(\mathrm{Eu}^{+2}(\mathrm{Eu})\) \\
(v) \(\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}\)
\end{tabular} \& \[
\begin{aligned}
\& 1 / 2+1 / 2 \\
\& 1 / 2+1 / 2 \\
\& 1 / 2+1 / 2 \\
\& 1 \\
\& 1
\end{aligned}
\] \\
\hline 30 \& \begin{tabular}{l}
(a) \\
(i) \\
(ii) \\
(iii) \(\mathrm{Cl}-\mathrm{CH}_{2}-\mathrm{COOH}\) \\
(b) (i) Add \(\mathrm{NaHCO}_{3}\), benzoic acid will give brisk effervescence whereas benzaldehyde will not give this test. (or any other test) \\
(ii) Add tollen's reagent, propanal will give silver mirror whereas propanone will not give this test. (or any other test)
\end{tabular} \& 1
1
1

1
1
1
1

\hline \& OR \&

\hline 30 \& | (a) (i) Because the positve charge on carbonyl carbon of $\mathrm{CH}_{3} \mathrm{CHO}$ decreases to a lesser extent due to one electron releasing(+I effect) CH_{3} group as compared to $\mathrm{CH}_{3} \mathrm{COCH}_{3}$ (two electron releasing CH_{3} group) and hence more reactive. |
| :--- |
| (ii) Because carboxylate ion (conjugate base) is more resonance stablized than phenoxide ion. |
| (b) (i) | \& 1

1

\hline
\end{tabular}

Sr. No.	Name		Sr. No.	Name	
1	Dr. (Mrs.) Sangeeta Bhatia		9	Sh. Partha Sarathi Sarkar	
2	Dr. K.N. Uppadhya		10	Mr. K.M. Abdul Raheem	
3	Prof. R.D. Shukla		11	Mr. Akileswar Mishra	
4	Sh. S.K. Munjal		12	Mrs. Maya George	
5	Sh. Rakesh Dhawan		13	Sh. Virendra Singh Phogat	
6	Sh. D.A. Mishra		14	Dr. (Mrs.) Sunita Ramrakhiani	Ms. Garima Bhutani
7	Sh. Deshbir Singh				
8	Ms. Neeru Sofat				

