12921 1. The number of mappings which are not one-one on a set $A = \{a, b, c, d\}$ is (C) 232 (A) 24 (B) 256 (D) 16 2. The domain of the function $f(x) = \frac{1}{\sqrt{|x|-x|}}$ is (A) $R - \{0\}$ (B) The open interval $(-\infty, 0)$ (C) The open interval $(0, \infty)$ (D) The closed interval (-1, 1) 3. If N = 100 !, then $\frac{1}{\log_2 N} + \frac{1}{\log_3 N} + \dots + \frac{1}{\log_{100} N}$ is (B) 2 (A) 100 (C) 0 (D) 1 4. Which one of the following subset in R² is not convex ? (A) $\{(x, y) : x^2 + y^2 < 25\} \cup \{(x, y) : x^2 + y^2 = 1\}$ (B) $\{(x, y) : 0 \le x \le 2, 0 \le y \le 2\} \cup \{(x, y) : |x| \le 2, |y| \le 2\}$ (C) {(x, y) : $|x| \le 1$, $|y| \le 1$ } \cup {(x, y) : 2 $\le x \le 5$, 3 $\le y \le 5$ } (D) $\{(x, y) : 0 \le x < 2 \text{ and } y \le x\}$ 5. Let f : R \rightarrow R and g : R \rightarrow R be continuous functions, where R is the set of all real numbers. Then the value of the integral $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} [f(x) + f(-x)][g(x) - g(-x)]dx$ is (B) -1 (C) 1 (D) 0 (A) π 6. If 1, α_1 , α_2 ,..., α_{24} are the 25th roots of unity, then $(1 - \alpha_1)(1 - \alpha_2)$... $(1 - \alpha_{24})$ is (B) 25 (C) 1 (A) 24 (D) –1 7. The curve represented by $Im\left(\frac{1}{z}\right) = c$, where $c \neq 0$ and z is a complex variable, is (A) a straight line (B) a circle (C) a rectangular hyperbola (D) a parabola 8. If I, m, n \in R, I \neq 0, and the quadratic equation Ix² + mx + n = 0 has no real roots, then (A) I + m + n = 0(B) (I + m + n) n < 0(D) (I + m + n) n > 0(C) Im + In + mn = 0

9. The system $x + y + 2z = a_1, -2x - z = a_2, x + 3y + 5z = a_3$ has no solution if (A) $a_3 = a_2$ and $a_1 \neq 0$ (B) $a_3 = a_2 = a_1 = 0$ (C) $a_2 = 3a_1$ and $a_2 = 0$ (D) $a_2 = -3a_1$ and $a_2 = 0$ 10. If $A = \begin{bmatrix} 1 & 0 & x \\ 0 & 1 & y \\ 0 & 0 & -1 \end{bmatrix}$ then $A^{100} - A^{50} + A^{25} - A + I$ is (C) –A (A) 0 (B) A (D) I 11. The straight line x + y = a touches the parabola $x^2 - x + y = 0$ if (B) a = -1(A) a = 1(D) a takes any value (C) a = 012. What points P(x, y) satisfy the inequality $x^2 + y^2 - 2x - 4y - 4 < 0$? (A) P lies inside the ellipse with focus (1, 2) and eccentricity 2 (B) P lies outside the ellipse with focus (1, 2) and eccentricity 2 (C) P lies inside the circle of radius 3 with centre (1, 2) (D) P lies outside the circle of radius 3 with centre (1, 2) 13. The maximum number of points of intersection of a circle and a parabola is (A) 1 (B) 2 (C) 3 (D) 4 14. The angle between the lines whose direction cosines are (1, -1, 0) (-1, -1, -1) is (B) π_{Δ} (C) $\frac{\pi}{3}$ (D) $\frac{\pi}{2}$ (A) 0 15. The minimum number of points needed to determine a sphere is (A) 4 (B) 3 (C) 2 (D) 1 16. $\int_{-\infty}^{\infty} \frac{e^{-y}}{v} dy dx$ is also equal to (A) $\int_{0}^{\infty} \int_{0}^{\infty} \frac{e^{-y}}{y} dy dx$ (B) $\int_{0}^{\infty} \int_{0}^{y} \frac{e^{-y}}{y} dydx$ (D) $\int_{0}^{\infty} \int_{0}^{y} \frac{e^{-x}}{x} dy dx$ (C) $\int_{0}^{\infty} \int_{0}^{\infty} \frac{e^{-x}}{x} dx dy$

12921 17. If a > 0, then the integral $\int_{a}^{\infty} \sin x \, dx$ (A) converges (B) diverges (C) neither converges nor diverges (D) is equal to ± 1 18. $\frac{dy}{dx}$ of $y = \int_{0}^{x^2} \cos t dt$ is (A) $2x \cos x^2$ (B) 2x sin x² (C) 2x sin 2x (D) 2x cos 2x 19. The equation of the tangent to the curve $x = t \cos t$, $y = t \sin t$ at the origin is (A) y = 0(B) x = 0(C) x = y(D) x = -y20. Let $f : R \rightarrow R$ be a differentiable function and f(1) = 4. Then the value of $\lim_{x \to 1} \int_{1}^{f(x)} \frac{2t}{x-1} dt$ is (B) 2f'(1) (C) 4f'(1) (A) f'(1)(D) 8f'(1) 21. Let {f_a} be a sequence of continuous functions on [0, 1] converging pointwise to a function f on [0, 1]. For f to be continuous on [0, 1], the uniform convergence of {f_n} to f on [0, 1] is (A) sufficient, but not necessary (B) necessary, but not sufficient (C) necessary and sufficient (D) neither necessary nor sufficient 22. For the series $\sum_{n=1}^{\infty} \frac{e^{inx}}{n}$, x in [0, 2 π], which of the following statements hold ? (A) The series converges uniformly on the closed interval $[0, 2\pi]$ (B) The series converges uniformly on the open interval $(0, 2\pi)$ (C) The series converges uniformly on compact subsets of $[0, 2\pi]$ (D) The series converges only at a finite number of points in $[0, 2\pi]$

- 23. Let {f_n}, {g_n} be two sequences of complex valued functions on a set S, each converging uniformly on S. Then which of the following statements is not necessarily true ?
 - (A) $\{f_n + g_n\}$ is uniformly bounded on S (B) $\{f_n g_n\}$ is uniformly bounded on S
 - (C) $\{f_n + g_n\}$ is uniformly convergent on S (D) $\{f_n g_n\}$ is uniformly convergent on S

12921

• •

1 120121 11212				12521	
24.	From the following se convergent on [0, 1].	hich is uniformly			
	(A) {x ⁿ }	(B) $\{(x - 1) x^n\}$	(C) $\{(x + 1)x^n\}$	(D) $\{(1 + x^2) x^n\}$	
25.	If the radius of conve	rgence of the power	series $\sum_{n=0}^{\infty} a_n z^n$ is 2, th	nen the radius of	
	convergence of the p	Dower series $\sum_{n=0}^{\infty} a_n z^n$	^{n²} is		
	(A) 2	(B) √ <u>2</u>	(C) 4	(D) 1	
26.	Let e ^z denote the exp (A) 1	oonential function. F (B) e ^{izi}	For $z = x + iy$ in \mathbb{C} , $ e^{iz} $ (C) e^{x}	has the value (D) e ^{-y}	
27.	Pick the region in white (A) $\{z : z - 1 < 1\}$ (C) $\mathscr{Q} \sim \{z : z \le 0\}$	ich there does not ex	 kist an analytic branch (B) {z : 0 < z < 1} (D) Ø ~ { z : z ≥ 0} 	of the logarithm.	
	 8. Suppose a function f defined on a disk D has a power series expansion on D. Then which of the following statements is false ? (A) f is analytic on D (B) f is infinitely many times differentiable on D (C) f does not have a primitive in D (D) exp {f(z)} is analytic on D 				
29.	The function $\frac{z^6-1}{(z-1)^2}$	($z \in \mathbb{C}$, $z \neq 1$) ha	is at z = 1		
	(A) a simple pole(C) a pole of order 2		(B) a removable sing(D) an essential sing	• •	
30.	 Which of the following subsets of I = [0, 1] has a positive Lebesgue measure ? (A) {x ∈ I : x has a decimal expansion x = a₁, a₂ with a₁ = 0 for n > 1000 } 				
	(B) {x \in I : x has a ternary expansion $X = \frac{a_1}{3} + \frac{a_2}{3^2} +$				
	with $a_n =$ (C) {x \in I : x has a binomial point (D) all rational point	inary expansion}			
		-4-			

.

1

12921					
31. Let $\alpha(x) = \frac{1}{2}$ on	$0, \frac{1}{2}$				
$= -\frac{1}{2}$ on	$\left(\frac{1}{2},1\right)$				
Then $\int_{0}^{1} x^{2} d \alpha(x) h$	as the value				
(A) 0	(B) ½	(C) ⁻¹ / ₂	(D) ⁻¹ / ₄		
32. Let f be defined or	n [0, n] where n is a	a positive integer by			
f(x) = k if k - 1 < x	$k \leq k, k = 1, 2,, n$	and f(0) = 0.			
Let α (x) = [x] be the	ne greatest integer	function. Then ∫f(x) do	x (X) has the value		
(A) n(n−1)	(B) n²	(C) n(n + 1)	(D) $\frac{n}{2}(n+1)$		
set E of IR. Suppo	se $f_n(x) \to f(x)$ alm	ve measurable function nost everywhere on E.	s on a measurable If		
$\alpha = \int_{E} f(x) dx \text{ and } \beta$					
(A) α < β	(⊃) α ≤ p	(C) p≤a	(D) β < α		
34. If γ is the positive	34. If γ is the positively oriented unit circle, then $\int_{\gamma} \frac{e^z}{z} dz$ has the value				
(A) 0	(B) 1	(C) 2πi	(D) – 2πi		
35. If γ(t) = 1+ 2e ^{it} , 0	$\leq t \leq 2\pi$, then $\frac{1}{2\pi i}$	$\int_{\gamma} \frac{z^2 + 3}{z - 2} dz$ has the value	alue		
(A) 0	(B) 1	(C) 7	(D) 5		
36. If a < 1, the Mobi (A) D (C) 2 D	us transformation	$\frac{z-a}{1-\overline{a}z}$ maps the disk D (B) a proper subs (D) The upper ha	set of D		
		-5-			

. .

				12321
37. Let f be analytic in the disk $\{z: z <1\}$ with f (0) = 0 and $ f(z) \le 1$ for all z in the disk. Then which of the following statements does not hold ?				
	(A) $\left f\left(\frac{1}{4}\right) \right \leq \frac{1}{4}$	(B) $ f'(0) \le 1$	$(C) \left f\left(\frac{1}{2}\right) \right > \frac{1}{2}$	(D) $\left f\left(-\frac{1}{2}\right) \right \leq \frac{1}{2}$
38.	Let f be an entire fur (A) 1	iction with f (z) \rightarrow 1 a (B) –1	s z $\rightarrow \infty$. Then f (0) h (C) 0	as the value (D) 2
39.	x + iy in D, then u(x,	y) is equal to	Sk D with $f(0) = 1$. If v (C) $x^2 - y^2 + 1$	
40.	A Mobius transforma (A) atmost one fixed (C) atmost two fixed	l point	lentity has (B) atleast two fixed (D) no fixed point	points
41.	Which of the followin (A) $x^3 + 1$	ng is an irreducible po (B) x ⁴ + x ² + x + 1	<u> </u>	(D) x ⁴ + x + 1
42.	Let f(x) and g(x) be point is a possible degree (A) 10	-	5 over a field F. Which (C) 6	of the following (D) 4
43.	Which of the followir (A) 3	ng is a zero divisor ir (B) 5	n the ring Z ₁₀ ? (C) 7	(D) 9
44.	Let D be a Euclidea $\varepsilon(a) = \varepsilon(b)$. Which c (A) $a = b$ (C) $a = bc$ for some	of the following is ne	lidean valuation ε. Le cessarily true ? (B) ab = 1 (D) none of the above	
45.	Which of the followin (A) Z_4	ng is an integral doma (B) Z ₅	ain? (C)Z ₆	(D) Z ₁₀
46.	is the ring of rational true about Ker ϕ ?	s. Suppose that ϕ (gs where Z is the ring of $(z) ≠ 0$. Then which of enerated by a prime p	*
		ere m is a non-prime		

- (B) Ker $\phi = \langle m \rangle$ where m is a non-prime (C) Ker $\phi = (0)$ (D) Ker $\phi = Z$

1292	21		
47.	The characteristic of the field of complex (A) 0 (C) 2	numbers is (B) 1 (D) 3	
48.	 B. Let a be algebraic and b be transcendental over a field F. Then which of t following is not true ? (A) ab is transcendental (B) a + b is transcendental (C) a + b is algebraic (D) a² + b² is transcendental 		
49.	The degree of the splitting field of $x^3 - 2$ (A) 2 (B) 3	over Q is (C) 5	(D) 6
50.	50. Which of the following pairs of fields are isomorphic. (Here \mathbb{C} is the field of complex numbers R is the field of reals and Q is the field of rationals. Also x is an indeterminate)		
	(A) \mathbb{C} and R (C) \mathbb{Q} (x) and \mathbb{Q} (x ²)	(B) \mathbb{Q} and $\mathbb{Q}\left(\sqrt{2}\right)$ (D) \mathbb{Q} (x) and R (x)	
51.	 Which of the following sets are linearly in (A) {(1, 2, 1), (1, 3, 1), (1, 4, 1)} (B) {(2, 4, 2), (2, 5, 2), (2, 6, 2)} (C) {(3, 4, 3), (3, 5, 5), (3, 6, 7)} (D) {(3, 1, 3), (4, 1, 4), (1, 1, 2)} 	dependent in IR ³ ?	
52.	Let V be the vector space of all polyno IR.Then dimension of V is		
53.	(A) 5(B) 6Let V be the space of all polynomials of de is a subspace of V ?	(C) 10 gree ≤3over IR. Which	(D) 12 n of the following
	(A) $\{f(x) \in V : f(0) = 1\}$ (C) $\{f(x) \in V : f(1) = 0\}$	(B) $\{f(x) \in V : f(1) = 1$ (D) $\{f(x) \in V : f(1) \neq 0\}$	
54.	54. Which of the following is an eigen value of the matrix $\begin{bmatrix} 1 & 0 \\ 2 & 3 \end{bmatrix}$?		
	(A) 0 (C) 3 -7-	(B) 2 (D) 4	

55. Which of the following pairs of matrices are conjugates of each other?

	$(A) \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} and \begin{bmatrix} 2 \\ 0 \end{bmatrix}$	1 2]	$(B) \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} and \begin{bmatrix} 4 & 1 \\ 0 & 2 \end{bmatrix}$	1] 1]		
	(C) $\begin{bmatrix} 3 & 1 \\ 0 & 3 \end{bmatrix}$ and $\begin{bmatrix} 3 \\ 0 \end{bmatrix}$	0 3]	(D) $\begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix}$ and $\begin{bmatrix} 3 \\ 0 & -1 \end{bmatrix}$	0 - 1		
56.	Which of the followin (A) (1 2 3 4)	•	ation ? (C) (1 2 3) (1 3 4)	(D) (1 2) (1 3 4)		
57.	The number of homo (A) 1	morphisms from the ((B) 2	cyclic group Z ₅ to the cy (C) 3	/clic group Z ₆ is (D) 4		
58.	The number of subg (A) 1	roups of order 5 in a ((B) 2	group of order 20 is (C) 5	(D) 6		
59.	59. Let S_5 be the symmetric group and A_5 be the alternating group on 5 symbols. Let $\phi: A_5 \to S_5$ be a non-trivial homomorphism. Then which of the following is true ?					
	(A) ϕ is one-to-one		(B) φis onto			
	(C) Im ϕ contains of	dd permutations	(D) Im ϕ is a subgroup of index 5 in ${\rm S}_{_5}$			
60.		ment $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$ in th	e multiplicative group	of non singular		
	3×3 matrices is (A) 2	(B) 3	(C) 4	(D) infinite		
61.	Let IR ³ be the metric a point on the unit ci	•	n metric. Which of the	following is not		

(A) (1,0,0) (B) $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}\right)$ (C) (1,0,1) (D) $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)$

62. Let C [0, 1] be the metric space of all continuous real valued functions on [0, 1]; with supremum metric. Let z∈C [0, 1] be defined by z (t) = 0 for all t∈ [0, 1]. Which of the following belongs to the open ball of radius 1 centered at z?

(A) $f(t) = t^2$ (B) f(t) = 1 + t (C) $f(t) = \frac{t^2 + 1}{3}$ (D) $f(t) = \frac{t + 1}{2}$

63. Let $f_n(t) = \begin{cases} \frac{1}{n} : t \le \frac{1}{n} \\ 0 : t > \frac{1}{n} \end{cases}$ be a sequence in C [0, 1]. Which of the following is true ? (A) f_n converges to f (t) = 0 (B) f_n converges to f (t) =1

- (C) f_n converges to f (t) = $\frac{1}{2}$ (D) f_n is not convergent
- 64. Which of the following is not a complete metric space?
 - (A) IR² with Euclidean metric
 - (B) IR² with discrete metric
 - (C) C [0, 1] with supremum metric
 - (D) P [0, 1] of all polynomials with supremum metric

65. Let R be the set of reals, Q the set of rationals and S be the set of all irrationals.

Let τ be a topo	ology on R given by	$\tau = \{R, \mathbb{Q}, S, \phi\}$. Let A	$\Lambda = \{1\}$ then $\overline{A} =$
(A) A	(B) R	(C) S	(D) Q

66. Let X = {1, 2, 3, 4, 5} and τ = {X, φ, {1, 2, 3}, {2, 3}}. Then the interior of A = {2, 3, 4, 5} in (X, τ) is
(A) A
(B) {2, 3}
(C) {1, 2, 3}
(D) φ

- 67. Which of the following pairs of topological spaces are homeomorphic? All spaces have topology induced by Euclidean metric.
 - (A) (0, 1) and \mathbb{R} (B) (0, 1) and [0, 1](C) [0, 1] and \mathbb{R} (D) [0, 1] and $[0, \infty]$
- 68. Let X, Y be topological spaces and f : $X \rightarrow Y$ be a continuous map. Which of the
 - following is not necessarily true ?
 - (A) $f^{-1}(A)$ is closed in X whenever A is closed in Y
 - (B) f(B) is closed in Y whenever B is closed in X
 - (C) $\{f(x_n)\}$ is convergent whenever (x_n) is convergent
 - (D) $f(\overline{A}) \subseteq \overline{f(A)}$ for all subsets A of X

- 69. Let X be a connected space with infinitely many points and Y be the two points discrete space {0, 1}. Let f : X → Y be continuous with f(x) = 1 for some x ∈ X. Then which of the following is true ?
 - (A) f(y) = 1 for all $y \in X$
 - (B) $f(y) \neq 1$ whenever $y \neq x$

(D) f is onto

- 70. Let X be the two points discrete space X = {0, 1}. Let Y be a connected space with |Y|>2. Which of the following is true about X×Y ?
 - (A) X×Y is connected

(C) f is one-to-one

- (B) X×Y is disconnected with exactly two components
- (C) X×Y is disconnected with exactly three components
- (D) There is a disconnection of X×Y separating any two points z_1 and z_2
- 71. Let C be the field of complex numbers and A be the linear operator on the complex vector space C² defined by $A(x_1, x_2) = (x_2, -x_1)$. Let I be the identity operator. Then the null space of A il is the span of
 - (A) $\{(1, -i)\}$ (B) $\{(1, -1)\}$ (C) $\{(1, i)\}$ (D) $\{(1, 1)\}$
- 72. Let X be a normed linear space. Then a subspace Y of X is bounded iff(A) Y = {0}(B) Y is finite dimensional
 - (C) Y is infinite dimensional (D) $Y \neq \overline{Y}$
- 73. Let X be the normed linear space C_{00} with norm $II II_{\infty}$. Then \overline{X} is
 - (A) C (B) C_0 (C) C_{00} (D) l^{∞}
- 74. The Hilbert space in which the Legendre polynomials are orthogonal is

(A)
$$L^{2}[-\pi, \pi]$$
 (B) $L^{2}\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ (C) $L^{2}[-1, 1]$ (D) $L^{2}[0, \infty]$

75. Let H be the complex Hilbert space of square summable sequences of complex numbers and let $e_j = (0, 0, ..., 0, 1, 0, ...)$, where 1 occurs in the jth coordinate.

If x = (1, 2, ..., 100, 0, 0, ...), then
$$\sum_{j=1}^{\infty} |\langle x, e_j \rangle|^2$$
 is
(A) 100 (B) 100²
(C) 1+2+3+...+100 (D) 1² + 2² + ... + 100²

- 76. Let X = C[-1, 1] with L²- innerproduct and S = {f \in X : f(-t) = f(t) $\forall t \in [-1, 1]$ }. Then S[⊥] is
 - (A) {0}
 - (B) X
 - (C) { $f \in X : f(t) = c \forall t \in [-1, 1]$, where c is a constant

(D)
$$\{f \in X : f(-t) = -f(t) \forall t \in [-1, 1]\}$$

77. Let X be an innerproduct space and for x, $y \in X$, f(x) = f(y) for every $f \in X'$. Then (A) x = y = 0 (B) x = y (C) $x \perp y$ (D) x = -y

78. Let H be a Hilbert space. If x, y∈ H are such that ||x|| = 6, || x + y|| = 16 and || x-y|| = 4, then ||y|| is
(A) 2
(B) 8
(C) 10
(D) 12

79. Let H be the complex Hilbert space C³, where C is the field of complex numbers.

If a linear operator A on H is represented by the matrix $\begin{bmatrix} 1 & 0 & 0 \\ 0 & i & 0 \\ 0 & 0 & -i \end{bmatrix}$ with respect

to the standard basis, then A* (the adjoint of A) is represented by the matrix.

(A)	$\begin{bmatrix} -1 & 0 & 0 \\ 0 & -i & 0 \\ 0 & 0 & i \end{bmatrix}$	(B)	[−1 0	0 i	0 0 -i
	[0 0 i]		0	0	−i]
(C)	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & i & 0 \\ 0 & 0 & -i \end{bmatrix}$	(D)	[1	0	0]
	0 i 0		0	- i	0
	[0 0 -i]		lo	0	i

- 80. Let R² and R be the normed linear spaces with the Euclidean norm, where R is the field of real numbers. If T : R² \rightarrow R is defined by T(x₁, x₂) = x₁ then
 - (A) T is bounded but not open
 - (B) T is open but not bounded
 - (C) T is bounded and open
 - (D) T is neither bounded nor open

-11-