Answer Key Summative Assessment - 1 (2014-15) Mathematics - Set A Class: VII			
	Section - A		
Q1.	Find the complement of 65°. 25°	1	
Q2.	Write $4 p-5=7$ in statement form. 5 subtracted from 4 times p gives 7	1	
Q3.	Write a pair of negative integers whose difference is -8 . (-10) and (-2)	1	
Q4.	$\begin{aligned} & \text { Find } \frac{1}{2} \text { of } 2 \frac{3}{4} . \\ & \frac{11}{8} \end{aligned}$	1	
	Section-B		
Q5.	Find 3 rational numbers between $\frac{-2}{5}$ and $\frac{-1}{3}$. $\frac{-2}{5}$ and $\frac{-1}{3}$, LCM of 5 and $3=15$ and conversion of the fractions to $\frac{-6}{15}$ and $\frac{-5}{15}$ ($1 / 2$ mark), multiplying the numerator and denominator by $4, \frac{-24}{60}$ and $\frac{-20}{60}$ ($1 / 2$ mark), the rational numbers $\mathrm{b} / \mathrm{w} \frac{-2}{5}$ and $\frac{-1}{3}$ are $\frac{-23}{60}, \frac{-22}{60}, \frac{-21}{60}$. (1 mark)	2	
Q6.	Solve $3 l-5=7$. $3 l-5=7 \Rightarrow 3 l=7+5$ ($1 / 2$ mark), $3 l=12$ ($1 / 2$ mark), $l=12 / 3$ ($1 / 2$ mark), $l=4(1 / 2$ mark)	2	
Q7.	The side of an equilateral triangle is 4.5 cm . Find its perimeter. Side of an equilateral triangle $=4.5 \mathrm{~cm}(1 / 2 \mathrm{mark})$ Perimeter of an equilateral triangle $=3 \times$ side ($1 / 2 \mathrm{mark}$) $=3 \times 4.5=13.5 \mathrm{~cm}$ (1 mark)	2	
Q8.	Smriti deposits Rs. 5000 in her bank account and withdraws Rs. 2500 from it, the next day. If withdrawal of amount from the account is represented by a negative integer, then how will you represent the amount deposited? Find the balance in Smriti's account after withdrawal. The amount deposited will be represented as a positive integer. ($1 / 2 \mathrm{mark}$) Amount deposited $=+5000 \quad$ Amount withdrawn $=-2500(1 / 2$ mark $)$ Balance in the account $=+5000+(-2500)(1 / 2 \mathrm{mark})=5000-2500=+2500(1 / 2 \mathrm{mark})$	2	
Q9.	Find the value of x. if $\boldsymbol{l} \\| \boldsymbol{m}$	2	
	$120^{\circ}+\angle 1=180^{\circ}$ (linear pair) ($1 / 2$ mark), $\angle 1=180-120=60^{\circ}$ ($1 / 2$ mark) $x=\angle 1$ (alternate angles) ($1 / 2$ mark), $x=60^{\circ}$ ($1 / 2$ mark)		
Q10.	Find the value of x .		

	Section - C	
Q11.	a) Arrange the following in ascending order : $\frac{-2}{7}, \frac{-2}{3}, \frac{-2}{5}$ b) Represent $\frac{-5}{3}$ on the number line. a) $\frac{-2}{3}<\frac{-2}{5}<\frac{-2}{7}(1 / 2$ mark for each correct entry) b) number line ($1 / 2$ mark), locating correct 2 integers between which the rational no.lie ($1 / 2$ mark) representing the correct rational no. ($1 / 2 \mathrm{mark}$)	$\begin{aligned} & 11 / 2 \\ & 11 / 2 \end{aligned}$
Q12.	Raju's father's age is 5 years more than three times Raju's age. Find Raju's age, if his father is 44 years old. Let Raju's age be x yrs. ($1 / 2$ mark) His father's age $=44$ yrs ATQ : $3 x+5=44$ (1 mark), solving (1 mark) $x=13$, Hence statement ($1 / 2 \mathrm{mark}$)	3
Q13.	A die is thrown. Find the probability getting : a) getting an even number on the top. b) getting a natural number on the top. c) getting a 7 on the top. Formula ($1 / 2$ mark) a) $\frac{1}{2}(1 / 2$ mark $)$, b) 1 (1 mark) c) 0 (1 mark)	3
Q14.	After simplifying put appropriate sign in the box.	3
Q15.	In a class of 40 students, $\frac{1}{5}$ of the total number of students like to study English, $\frac{2}{5}$ of the total number like to study Mathematics and the remaining students like to study Science. a) How many students like to study English? b) How many students like to study Science? Statements ($1 / 2$ mark) a) $\frac{1}{5} \times 40=8(1 / 2$ mark $)$ b) Fraction of students who like science $=1-\left[\frac{1}{5}+\frac{2}{5}\right](1 / 2$ mark $)=1-\frac{3}{5}=\frac{2}{5}(1 / 2 \mathrm{mark})$ Number of students who like science $=\frac{2}{5} \times 40=16$ (1 mark)	$1+2$
Q16.	Find the mean, median and mode of the given data : $2,14,16,12,14,14,16,14,10,14,17$ Mean (formula) ($1 / 2$ mark), calculation ($1 / 2$ mark) mean $=13$ Arranging in ascending order ($1 / 2$ mark), formula ($1 / 2$ mark), calculation ($1 / 2$ mark) median $=$ 14 $\text { Mode }=14 \text { (} 1 / 2 \mathrm{mark})$	3
Q17.	Anwar thinks of a number. If he takes 7 away from $\frac{5}{2}$ of the number, the result is 23 . Find the number. Let the number anwar thought be y ($1 / 2$ mark) ATQ : $\frac{5}{2} y-7=23$ (1 mark) , $\frac{5}{2} y=23+7=30(1 / 2 \mathrm{mark})$ $5 y=30 \times 2(1 / 2 \mathrm{mark}), y=60 / 5=12(1 / 2 \mathrm{mark})$	3
Q18.	$A B C D$ is a quadrilateral. Show that $A B+B C+C D+D A>A C+B D$ In quad $\mathrm{ABCD}, \mathrm{AC}$ and BD are the diagonals fig. ($1 / 2$ mark) By triangle inequality ($1 / 2$ mark), In $\triangle \mathrm{ABC}, \mathrm{AB}+\mathrm{BC}>\mathrm{AC}(1 / 2$ mark) In $\Delta \mathrm{BCD}, \mathrm{BC}+\mathrm{CD}>\mathrm{BD}(1 / 2$ mark $)$, In $\Delta \mathrm{ADC}, \mathrm{CD}+\mathrm{AD}>\mathrm{AC}(1 / 2$ mark $)$, In $\triangle \mathrm{ABD}, \mathrm{AD}+\mathrm{AB}>\mathrm{BD}(1 / 2$ mark $)$ Adding all the inequalities, $2(\mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{DA})>2(\mathrm{AC}+\mathrm{BD})(1 / 2$ mark $)$	3

	$\mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{DA}>\mathrm{AC}+\mathrm{BD}(1 / 2$ mark $)$					
Q19.	In the given figure the arms of two angles are parallel. If $\angle A B C=70^{\circ}$ then find the $\angle D G C$ and $\angle D E F$. $\angle \mathrm{ABC}=\angle \mathrm{DGC}=70^{\circ}(1$ mark $),($ corresponding angles $\mathrm{AB} \\| \mathrm{DE})(1$ mark $)$ $\angle \mathrm{DGC}=\angle \mathrm{DEF}=70^{\circ}(1$ mark $),($ corresponding angles $\mathrm{BC} \\| \mathrm{EF})(1$ mark)	3				
Q20.	Find the value of $\mathrm{x}, \mathrm{y}, \mathrm{z}$ if $\boldsymbol{l} \\| \boldsymbol{m}$ and $\mathrm{p} \\| g$. $\mathrm{x}=100^{\circ}$ (corresponding angles $\mathrm{p} \\| \mathrm{g}$) (1 mark) $x+z=180^{\circ}$ (linear pair), $z=80^{\circ}$ (1 mark) $y=80^{\circ}$ (alternate angles $p \\| g$) (1 mark)	3				
	Section - D					
Q21.	A tree is broken at a height of 5 m from the ground and its top touches the ground at a distance of 12 m from the base of the tree. Find the original height of the tree. Fig ($1 / 2 \mathrm{mark}$), Let the length of the broken tree be $x \mathrm{~m}$ i.e. the hypotenuse $=x(1 / 2 \mathrm{mark})$ Perpendicular $=5 \mathrm{~m}$ and Base $=12 \mathrm{~m} .(1 / 2$ mark $)$ By Pythagoras Thm. $(1 / 2 \mathrm{mark})$ $x^{2}=5^{2}+12^{2}(1 / 2 \mathrm{mark}), x^{2}=25+144(1 / 2 \mathrm{mark}), x^{2}=169, \mathrm{x}=13 \mathrm{~m}(1 / 2 \mathrm{mark})$ Hence statement ($1 / 2$ mark)	4				
Q22.	The performance of a student in $1^{\text {st }}$ term and $2^{\text {nd }}$ term is given. Draw a double bar graph choosing appropriate scale and answer the following: What quality of the child is depicted through the graph? Scale and axes ($1 / 2$ mark), each subject ($1 / 2$ mark), Quality of the student depicted is Hard work (1 mark)	4				

Q23.	In the given figure, line $\boldsymbol{l} \\| \boldsymbol{m}$ and \boldsymbol{n} is transversal. Find the value of \boldsymbol{x}, a, \boldsymbol{b} and \boldsymbol{c}.	

	$\begin{gathered} 1 / 2) \\ =-10(1 / 2 \text { mark }) \text {, hence statement (} 1 / 2 \text { mark }) \end{gathered}$	
Q29.	The three angles of a triangle are in the ratio 1:2:3. Find the three angles. Let the three angles be $x, 2 x$ and $3 x(1 / 2$ mark) By angle sum property of a triangle ($1 / 2$ mark) $\Rightarrow x+2 x+3 x=180(1 / 2$ mark) $6 \mathrm{x}=180(1 / 2)$ $\Rightarrow x=180 / 6(1 / 2 \mathrm{mark})=x=30(1 / 2 \mathrm{mark}), 2 x=60(1 / 2 \mathrm{mark}), 3 x=90(1 / 2 \mathrm{mark})$	4
Q30.	Name the following pairs of angles : a) Vertically opposite angles. b) Adjacent complementary angles. c) Linear pair. d) Equal supplementary angles. a) $\angle \mathrm{AOB}$ and $\angle \mathrm{DOE}$, b) $\angle \mathrm{AOB}$ and $\angle \mathrm{BOC}$, c) $\angle \mathrm{AOE}$ and $\angle \mathrm{DOE}$, d) $\angle \mathrm{AOC}$ and $\angle \mathrm{COD}$	4
Q31.	Find the value of : a) $\left[\frac{9}{2} \times\left(\frac{-7}{4}\right)\right]+\left[(-4) \div \frac{2}{3}\right]$ b) $\left[\frac{5}{63}-\left(\frac{-6}{21}\right)\right] \div\left[\frac{5}{3}+\frac{3}{5}\right]$ a) $\left[\frac{9}{2} \times\left(\frac{-7}{4}\right)\right]+\left[(-4) \div \frac{2}{3}\right]=\left[\frac{-63}{8}\right]+\left[-4 \times \frac{3}{2}\right](1 / 2 \operatorname{mark})=\left[\frac{-63}{8}\right]+(-6)(1 / 2 \mathrm{mark})$ $=\frac{(-63)+(-48)}{8}(1 / 2 \mathrm{mark})=\frac{-111}{8}(1 / 2 \mathrm{mark})$ b) $\left[\frac{5}{63}-\left(\frac{-6}{21}\right)\right] \div\left[\frac{5}{3}+\frac{3}{5}\right]=\left[\frac{5-(-18)}{63}\right] \div\left[\frac{25+9}{15}\right](1 / 2$ mark $)=\frac{23}{63} \div \frac{34}{15}(1 / 2$ mark $)=\frac{23}{63} \times \frac{15}{34}(1 / 2)$ $=\frac{115}{714}(1 / 2 \mathrm{mark})$	$2+2$

