SUMMATIVE ASSESSMENT - I, 2014 MATHEMATICS
 Class - IX

Time Allowed: 3 hours
Maximum Marks: 90

General Instructions:

1. All questions are compulsory.
2. The question paper consists of 31 questions divided into four sections A, B, C and D. Section-A comprises of 4 questions of 1 mark each; Section-B comprises of 6 questions of 2 marks each; Section-C comprises of 10 questions of 3 marks each and Section-D comprises of 11 questions of 4 marks each.
3. There is no overall choice in this question paper.
4. Use of calculator is not permitted.

SECTION-A

Question numbers 1 to $\mathbf{4}$ carry one mark each

Find the value of $\sqrt[4]{(36)^{-2}}$.

Factorise : $8 y^{3}-125 x^{3}$

Is $\triangle \mathrm{ABC}$ possible, if $\angle \mathrm{A}=50^{\circ}, \angle \mathrm{B}=130^{\circ}$ and $\angle \mathrm{C}=40^{\circ}$?
In which quadrant does the point $(2,3)$ lie?

SECTION-B

Question numbers 5 to 10 carry two marks each.
Write $\frac{3}{13}$ in decimal form and state what kind of decimal expansion does it have?

If $a+b=10$ and $a b=16$, then find $a^{2}+b^{2}$.
In the figure, $l \| \mathrm{m}$. If $\angle \mathrm{ABC}=\angle \mathrm{ABD}=40^{\circ}$ and $\angle \mathrm{A}=90^{\circ}$, then prove that $\triangle \mathrm{BCD}$ is isosceles.

In the given figure, $\mathrm{AC}=\mathrm{DC}$ and $\mathrm{CB}=\mathrm{CE}$. Show that $\mathrm{AB}=\mathrm{DE}$. Write the Euclid's axiom to support this.

Prove that two triangles are congruent if any two angles and the included side of one triangle is equal to any two angles and the included side of the other triangle.
In the given figure, AOB is a straight line and ray OC stands on it. Bisectors of $\angle \mathrm{AOC}$ and 3 $\angle \mathrm{COB}$ are OD and OE respectively. If $\angle \mathrm{DOC}=x$, find $\angle \mathrm{COE}$.

Express -0.00875 in the form of $\frac{p}{q}$, where p and q are integers and $\mathrm{q} \neq 0$.
Find three irrational numbers between $\frac{5}{7}$ and $\frac{9}{11}$.
If $a=3-2 \sqrt{2}$, then find the value of $a^{2}-\frac{1}{a^{2}}$.
Simplify : $27^{\frac{1}{3}}\left[27^{\frac{1}{3}}-27^{\frac{2}{3}}\right]$.
Plot $B(3,-4)$ on the graph paper. Also, plot reflections of B in $x-$ axis and 2 y-axis.

SECTION-C

Question numbers $\mathbf{1 1}$ to $\mathbf{2 0}$ carry three marks each.
is equal to any two angles and the included side of the other triangle.

In Figure, $A B \| C D$, then find x.

In figure, if $A B\|C D, C D\| E F$ and $x: y=5: 4$, find z.

A field is in the shape of a trapezium whose parallel sides are 10 m and 25 m . If non - parallel sides are 13 m and 14 m , find the area of the field.

Find the area of a triangle whose sides are $5 \mathrm{~cm}, 12 \mathrm{~cm}$ and 13 cm . Also, find the shortest altitude.

SECTION-D

Question numbers $\mathbf{2 1}$ to $\mathbf{3 1}$ carry four marks each.

Simplify : $\frac{2}{\sqrt{5}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{2}}-\frac{3}{\sqrt{5}+\sqrt{2}}$.

If $x=\frac{\sqrt{p+2 q}+\sqrt{p-2 q}}{\sqrt{p+2 q}-\sqrt{p-2 q}}$, then show that $q\left(x^{2}+1\right)=p x$.

Factorise : $x^{12}-y^{12}$.
If $x=4-\sqrt{15}$, find the value of $\left(x+\frac{1}{x}\right)^{2}$.

Find the value of the polynomial $p(x)=x^{4}-4 x^{3}+3 x^{2}-1$ at $x=1,-\frac{1}{3}, \frac{1}{2}$ and -2 .
Factorise : $x^{3}+13 x^{2}+32 x+20$
To protect poor people from cold weather, Ram Lal has given his land to make a Shelter home for 4 them. What value is being exhibited by him ?

In the given fig, sides $Q P$ and $R Q$ of $\triangle P Q R$ are produced to point S and T respectively. If $\angle P Q T=110^{\circ}$ and $\angle \mathrm{SPR}=135^{\circ}$, find $\angle \mathrm{PRQ}$

Show that in a right triangle the hypotenuse is the longest side.
If $\triangle A B C$ is an isosceles triangle with $A B=A C$, side $B A$ is produced to D such that $A B=A D$. 4 Prove that $\triangle \mathrm{BCD}$ is a right triangle.

In figure if $1 \| \mathrm{m}$ and $\angle 1=(2 x+y)^{\circ} ; \quad \angle 4=(x+2 y)^{\circ}$ and $\angle 6=(3 y+20)^{\circ}$. Find $\angle 7$ and $\angle 8$.
Show that the sum of the three altitudes of a triangle is less than the sum of the three sides of a 4 triangle.

