* एक बेलन की त्रिज्या 10 समी तथा ऊँचाई 4 समी है। तदनुसार, डस बेलन की त्रिज्या या ऊँचाई में कितने सेमी जोड़ी जाए, जिससे कस बलन के आयतन में भी उतनी ही वृद्धि हो जाए?
a) 5
b) 4
c) 25
d) 16

Soln:-
माना कि वृद्वि = x सेमी०
\therefore त्रिज्या में वृद्वि पर आयतन $=\pi(10+x)^{2} \times h$

$$
=\pi(10+x)^{2} \times 4
$$

तथा ऊँचाई " " " " $n=\pi(10)^{2} \times(4+x)$
\therefore प्रश्नानुसार,

$$
\begin{gathered}
\not \subset\left\{100+x^{2}+20 x\right\} \times h=\not \subset 10\{4+x\} \\
9100 h+h x^{2}+20 x h=400+100 x \\
\& 400+4 x^{2}+80 x=400+100 x \\
\& 4 x^{2}=100 x-80 x \\
\left\{4 x^{2}=20 x\right. \\
q x=5 \mathrm{~cm} .
\end{gathered}
$$

* यदि θ एक धनात्मक न्यूनकोण हो, और $\tan 2 \theta \cdot \tan 3 \theta=1$ हो, तो $\left(2 \cos ^{2} \frac{50}{2}-1\right)$ का मान कितना होगा?
a) $-1 / 2$
b) 1
c) $1 / 2$
(d) 0

Soln:-

$$
\begin{aligned}
\because & \tan 2 \theta \cdot \tan 3 \theta=1 \\
& 9 \tan 2 \theta=\frac{1}{\tan 3 \theta} \\
& 9 \tan 2 \theta \cdot \cot 30 \\
& 9 \tan 2 \theta=\tan (90-3 \theta) \\
& 92 \theta+3 \theta \cdot 90^{\circ} \\
Q & \theta=90 / 5=18^{\circ} \\
2 \cos ^{2} \frac{50}{2}-1= & 2 \cos ^{2} 45^{\circ}-1=2 \times \frac{1}{2}-1=1-1=0
\end{aligned}
$$

Generated by CamScanner from intsig.com

* एक समकोण त्रिभुज $x \times z$ में, जो γ पर समकोण है, यदि $x y=2 \sqrt{6}$ तथा $x z-y z=2$ हो तो $\sec x+\tan x$ का मान क्या होगा?
a) $1 / \sqrt{6}$
b) $\sqrt{6}$
c) $2 \sqrt{6}$
d) $\sqrt{6} / 2$

Soln:-

$$
\begin{aligned}
& \because(x y)^{2}+(y z)^{2}=(x z)^{2} \\
& 9(2 \sqrt{6})^{2}+a^{2}=(a+2)^{2} \\
& 9 \quad 24+\alpha^{2}=x^{2}+4+4 a \\
& 9 \quad 4 a=20 \\
& 9 \quad a=5 \\
& \therefore \sec x+\tan x \\
& \quad \frac{x z}{x y}+\frac{y z}{x y} \\
& =\frac{7+5}{2 \sqrt{6}}=\frac{121}{2 \sqrt{6}}+\frac{6}{\sqrt{6}}=\sqrt{6}
\end{aligned}
$$

figure:-

* x तथा r क्रमश: 9 सेमी तथा 2 सेमी त्रिज्या वाले वृत्तों के दो केंद्र है तथा $x r=17$ सेमी है। z, एक एे से वृत्त का केंद्र है जिसकी त्रिज्या $\gamma \mathrm{cm}$ है और जो उत दोनो वृत्तों को बाहर से स्पर्श करता है। तदनुसार, यदि $\angle X Z Y=90^{\circ}$ हो, तो γ का मान कितना होगा?
a) 4
b) 5
(c) 6
d) 8

Soln:-

$$
\begin{align*}
& \because \angle x z y=90^{\prime} \\
& \therefore(x z)^{2}+(y z)^{2}=(x y)^{2} \\
& (9+r)^{2}+(2+r)^{2}=17^{2} \tag{5}\\
& 981+r^{2}+18 r+4+r^{2}+4 \gamma=289 \\
& 92 r^{2}+22 r-204=0 \\
& 9 r^{2}+11 r-102=0 \\
& G r^{2}+17 \gamma-6 r-102=0 \\
& \therefore r=6
\end{align*}
$$

Figure:-

Generated by CamScanner from intsig.com

* एक शंकु और एक गोलार्ध का आधार एक समान है और उनकी ऊँचाई भी एक समान है। तदनुसार, उनके कुल पृष्ठों का अनुपात कितना होगा ?
a) $\sqrt{2}+1: 3$
b) $\sqrt{2}-1: 3$
c) $\sqrt{2}: 3$
d) 2:3

Soln:-

$$
\begin{aligned}
& \because h=r \\
& \therefore l^{2}=h^{2}+r^{2} \\
& 9 l^{2}=2 r^{2} \\
& 9 l=\sqrt{2} r \\
& \therefore \quad \frac{\left\langle r^{2}+\lambda \gamma l\right.}{3 \pi r^{2}}=\frac{\sqrt{2} \gamma+\gamma}{3 r}=\frac{\gamma(\sqrt{2}+1)}{3 \gamma}=\frac{\sqrt{2}+1}{3} .
\end{aligned}
$$

*/ यदि x वास्तविक संख्या हो एवं $x+\frac{1}{x} \neq 0$ हो और $x^{3}+\frac{1}{x^{3}}=0$ हो, तो $\left(x+\frac{1}{x}\right)^{4}$ का मान कितना होगा?
a) 4
b) 9
c) 16
d) 25

Solr:-

$$
\begin{aligned}
& \because\left(x+\frac{1}{x}\right)^{3}=x^{3}+\frac{1}{x^{3}}+3 x \cdot \frac{1}{x}\left(x+\frac{1}{x}\right) \\
& \quad 9\left(x+\frac{1}{x}\right)^{8^{2}}=3\left(x+\frac{1}{x}\right) \\
& \quad 9\left(x+\frac{1}{x}\right)^{2}=3 \\
& \quad 9\left(x+\frac{1}{x}\right)^{4}=9
\end{aligned}
$$

* एक कक्षा Cे चार भागों A, B, C तथा D में छात्रों का औसत भार 60 किग्रा० है। किंतु भाग A, B, C तथा D के धात्रों का अलग अलग औसत भार क्रमशः $45,50,72$ तथा 80 किग्र 10 है। तदनुसार, यदि भाग A तथा 13 का सम्मिलित औसंत भार 48 किश्रा० हो और भाग 13 तथा C का सम्मिलित औसतभार 60 किखा० हो तो भाग A, B, C तथा D के छात्रों की संख्याओं का औसत कितना होगा?
a) $4: 5,6: 5$
b) $4: 3: 5: 6$
c) $4: 6: 5: 3$
d) 3:4:5:6

Soln:

$$
\begin{aligned}
& 4: 6: 5 \\
& 2 \times 8: \frac{1}{8}=3 \times 8 \\
& \therefore(A+B+C) \quad D \\
& \underbrace{56}_{15 \times \frac{4}{3}} \\
& \therefore x=3 \\
& \begin{array}{r}
\therefore A: B: C: D \\
\\
\hline 4: 6: 5: 3 \\
\hline
\end{array}
\end{aligned}
$$

* यदि $x+\frac{4}{x}=4$, तो $x^{3}+\frac{4}{x^{3}}$ का मान कितना होगा?
a) 8
b) $8 \frac{1}{2}$
c) 16
d) $16 \frac{1}{2}$

Soln:- $\quad \because x+\frac{4}{x}=4$

$$
\Rightarrow x^{2}-4 x+4=0
$$

$$
9(x-2)^{2}=0
$$

$$
\begin{aligned}
\therefore \quad & x^{3}+\frac{4}{x^{3}} \\
= & 8+\frac{4}{82} \\
= & 8 \frac{1}{2}
\end{aligned}
$$

\& $x=2$

* एक चक्रीया चतुर्भुज $A B C D$ में $A B=B C, A D=D C, A C \perp B D$ तथा $\angle C A$ $=\theta$ है। तदनुसार, उसमें $\angle A B C$ किसके बराबर होगा?
a) θ
b) $0 / 2$
(c) 2θ
d) 30

Soln:-

$$
\begin{aligned}
\because \angle C A D & =\theta \\
\therefore \angle D C A & =\theta \quad(A D=C D) \\
\therefore \angle A D C & =180^{\circ}-2 \theta \text { (तीनोका थोणा=180) } \\
\therefore \angle A B C & =180^{\circ}-\left(180^{\circ}-2 \theta\right) \text { (चकीया) } A \\
& =180^{\circ}-180^{\circ}+2 \theta \\
& =2 \theta
\end{aligned}
$$

figure:-

* 7 cm त्रिज्या वाले एक वृत्त के व्यास $A B$ पर वृत्त के किसी बिंदु P से लंब का पाद N है। यदि जीवा $P B=12$ सेमी० है, तो B से N की दूरी कितनी होगी
a) $6 \frac{5}{7}$
b) $12 \frac{2}{7}$
c) $3 \frac{5}{7}$
(d) $10 \frac{2}{7}$

Soln:- माना कि $O N=x$

$$
\begin{array}{rl}
\therefore \quad 144-(7+x)^{2}=49-x^{2} \\
144-49-x^{2}+14 x=49-x^{2} \\
9 \quad 14 x=46 \\
9 & x=23 / 7 \\
\therefore B N & =B 0+0 N \\
\therefore 7+23 / 7=72 / 7=10 \frac{2}{7}
\end{array}
$$

Generated by CamScanner from intsig.com

* एक वृत्त की जीवाएँ $A B$ तथा $C D, E$ पर लंबवत प्रतिन्छेद करती है। खंड $A E, E B$ और $E D$ क्रमश: 2,6 तथा 3 cm लंबाई के हैं। वृत्त के व्यास का मान कितना होगा?
a) $\sqrt{65}$

1) $\sqrt{65} / 2$
c) 65
d) $65 / 2$

Soln:-

$$
\begin{aligned}
\because A E \times E B & =C E \times E D \\
2 \times 6 & =x \times 3 \\
\therefore x & =4
\end{aligned}
$$

$O F \perp A B$ तथा $O G \perp C D$ खींचा गया
figurer-

$$
\begin{aligned}
\therefore C G & =G D=7 / 2 \text { तथा } A F=F B=4 \\
\therefore E F=O G & =2(A F-F E=4-2=2) \\
\therefore O C & =\sqrt{C G^{2}+O G^{2}} \\
& =\sqrt{\left(\frac{7}{2}\right)^{2}+(2)^{2}} \\
& =\sqrt{\frac{49}{2}+4} \\
& =\sqrt{65} / 2
\end{aligned}
$$

$$
\therefore \text { वृत्त का व्यास }=2 \times r=2 \times \frac{\sqrt{65}}{2}=\sqrt{65}
$$

* यदि $\frac{1}{\sqrt[3]{4}+\sqrt[3]{2}+1}=a \sqrt[3]{4}+b \sqrt[3]{2}+c$ हो तो $a+b+c$ का मान क्या होशा?
a) 1
b) 0
c) 2
d) 3

Soln:-

$$
\begin{aligned}
& \because \frac{1}{2^{2 / 3}+2^{1 / 3}+1}=a \cdot 2^{2 / 3}+b 2^{1 / 3}+c \\
& 9 \frac{\left(2^{1 / 3}-1\right)}{\left(2^{1 / 3}-1\right)\left(2^{2 / 3}+2^{1 / 3}+1\right)}=a 2^{2 / 3}+b 2^{1 / 3}+c \\
& \Leftrightarrow \quad \frac{\left(2^{1 / 3}-1\right)}{\left(2^{3 / 3}\right)^{3}-(1)^{3}}=a 2^{2 / 3}+b 2^{1 / 3}+c \\
& \Rightarrow \quad 2^{1 / 3}-1=a 2^{2 / 3}+b 2^{1 / 3}+c \quad \therefore a+b+c \\
& \therefore a=0, b=1, c=-1
\end{aligned}=0+x-1 .
$$

* A ने 13 को एक टेप $\{4,860$ में 19% हानि पर बेचा ।फिट 13 ने C को वह रेप ऐसी कीमत पर बेचा कि उससे A को 17% का लाभ मिलता। तदनुसार B का लाभ कितना था?
a) $222 / 9 \%$
b) $33 \frac{1}{3} \%$
c) $444 / 9 \%$
d) $66 \frac{2}{3} \%$

Soln:-

$$
\begin{aligned}
\text { माना } A \text { का क्र०्मू० } & =100 \% \\
\therefore B{ }^{n} n & =81 \% \\
B{ }^{n} व_{\text {व मू० }} & =117 \% \text { (A का } 17 \% \text { लाभ) } \\
\therefore B \text { का लाभ } & =(117-81)=36 \\
\therefore B \text { का \%लाभ } & =\left(\frac{36^{4}}{819} \times 100\right) \% \\
& =\frac{400}{9}=444 \% \%
\end{aligned}
$$

* A, B तथा C एक वृत्त पर स्थित तीन बिंदु है । उनमें C पर खींची गयी स्पर्श रेखा $13 A$ को बढ़ाने पर T पर मिलती है। यदि $\angle A T C=36^{\circ}$ तथा $\angle A C T=48^{\circ}$ दिया हो तो $A B$ द्वारा वृत्त के कैंद्र पर अंतरित कोण होगा?
a) 84°
b) 48°
(c) 96°
d) 72°

Soln:- $\quad \because \angle C A B=\angle A C T+\angle A T C$
Figure:-

$$
\begin{aligned}
\therefore \angle C B A & =48^{\circ} \\
\therefore \angle B C A & =180^{\circ}-\left(84+48^{\circ}\right) \\
& =180^{\circ}-132^{\circ} \\
& =48^{\circ} \\
\therefore \angle B O A & =2 \times \angle B C A \\
& =2 \times 48 \\
& =96^{\circ}
\end{aligned}
$$

* एक त्रिभुज की भुजाएँ $7,4 \sqrt{3}$ और $\sqrt{13}$ सेमी० है। त्रिभुज का सबसे छोटा कोण कितना होगा?
a) 15°
(b) 30°
c) 45°
d) 60°

Soln:-
Figure:-
\because त्रिभुज का सबसे छोटा भुजा = $\sqrt{13}$ है।
[Note:- यदि सबसे छोटा भुजा निकालने में काठिनाई हो तो सभी $c=\sqrt{13}$ मुजाओं को वर्ण कर दें।
अब हमें सबसे छोटा कोण अर्थात $\angle C$ ज्ञात कसन है। B
 अतः हम 'Cosine rule' का प्रयोग करेंगे।

$$
\begin{aligned}
\because \cos c & =\frac{a^{2}+b^{2}-c^{2}}{2 a b} \\
& =\frac{49+48-13}{2 \times 7 \times 4 \sqrt{3}} \\
& =\frac{8412 \sqrt{3}}{2 \times 7 \times 4 \sqrt{3}} \\
\therefore \cos C & =\frac{\sqrt{3}}{2} \\
9 \cos C & =\cos 30^{\circ} \\
\therefore \angle C & =30^{\circ}
\end{aligned}
$$

Cosine rule का प्रयोग हम तब करतें है जब हमें त्रिभुज की तीन अलग अल्मग भुजाओं का मान दिया हो तथा किसी कोण का मान ज्ञात करना हो।

$$
\begin{aligned}
& \angle A \text { के सामने वाला भुजा }=a \\
& \angle B \text { n }=b \\
& \angle C \cdot \cos A=\frac{1^{2}+c^{2}-a^{2}}{2 b c} \\
& \operatorname{Cos} B=\frac{a^{2}+c^{2}-b^{2}}{2 a c} \\
& \operatorname{ccs} C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}
\end{aligned}
$$

* $\tan 70^{\circ}$ का मान किसके बराबर होगा ?
a) $\tan 50^{\circ}+\operatorname{ta} 20^{\circ}$
(b) $2 \tan 5^{\circ}{ }^{\circ}+\tan 20^{\circ}$
c) $\tan 50^{\circ}+2 \tan 20^{\circ}$
d) $2 \tan s i$

Soln:-

$$
\begin{aligned}
& \because \tan 70^{\circ}=\tan (50+20) \\
& \because \tan (A+B)=\frac{\tan A+\tan 13}{1-\tan A \cdot \tan B} \\
& \therefore \tan 70^{\circ}=\frac{\tan 50^{\circ}+\tan 20^{\circ}}{1-\tan 50^{\circ} \cdot \tan 20^{\circ}} \\
& 9 \tan 70^{\circ}-\tan 70^{\circ} \cdot \tan 50^{\circ} \cdot \tan 20^{\circ}=\tan 50^{\circ}+\tan 20^{\circ} \\
& 9 \tan 70^{\circ} \cdot \tan 50^{\circ}=\tan 50^{\circ}+\tan 20^{\circ}\left(\tan 70^{\circ} \cdot \tan 20=1\right) \\
& \& \tan 70^{\circ}=2 \tan 50^{\circ}+\tan 20^{\circ}
\end{aligned}
$$

* एक लंबवृत्तीय शंकु की ऊँचाई और उसके वृत्तीय आधार की त्रिज्या क्रमश 9 सेमी० तथा 3 सेमी० है। शंकु को उसके आधार के समांतर एक तल द्वारा दो भागों में काटा गया। शंकु के घिन्नक का आयतन $44 \mathrm{~cm}^{3}$ है। शंकु के ऊपरी भाग की त्रिज्या कितनी होगी?
a) 6 cm
b) $\sqrt{13} \mathrm{~cm}$
(c) $\sqrt[3]{13} \mathrm{~cm}$.
d) 9 cm

Soln:-

$$
\begin{aligned}
\because \text { शंकु का आयतन } & =\frac{1}{3} \pi \times 3 \times 3 \times 9 \mathrm{~cm}^{3} \\
& =27 \pi \mathrm{~cm}^{3}
\end{aligned}
$$

$$
\text { छिन्नक का आयतन }=44 \mathrm{~cm}^{3}=14 \pi \mathrm{~cm}^{3}
$$

\therefore शंकु (बड़े) का आयतन : शंकु (बारे) का आयतन

$$
\left.\frac{244}{221} \times 7=14\right]
$$

$$
\begin{gathered}
\left.\therefore \quad \begin{array}{c}
27 \pi \\
\therefore=\sqrt[3]{27}: \sqrt[3]{13} \\
3: \sqrt[3]{13} \\
3
\end{array}\right] \begin{array}{l}
3 \\
\therefore
\end{array} \\
\therefore \text { ऊपरी भाग की त्रिज्या }=\sqrt[3]{13}
\end{gathered}
$$

Generated by CamScanner trom intsig.com

* यदि $a^{4}+a^{2} b^{2}+b^{4}=8$ तथा $a^{2}+a b+b^{2}=4$ हो तो $a b=$?
a) 0
b) 1
c) 2
d) 4

Soin:-

$$
\begin{aligned}
\because a^{4}+a^{2} b^{2}+b^{4} & =\left(a^{2}+a b+b^{2}\right)\left(a^{2}-a b+b^{2}\right) \\
9 \quad 8 & =4 \times x \\
\quad x & =2 \\
\therefore \quad a^{2}+a b+b^{2} & =4 \\
\frac{-a^{2}+a b \pm b^{2}}{2 a b} & =2 \\
9 a b & =1
\end{aligned}
$$

* किसी स्मारक के आधार से एक क्षैतिज ऐेखा के एक बिंदु पर स्मारक के शिखर का उन्नयण कोण इतना पाया गया कि उसका टेंजेंट $1 / 5$ है। स्मारक की और 138 मी० चलने पर उन्नयण कोण का सीकेंट $\sqrt{193} / 12$ पाया गया। स्माएक की ऊँचाई मीटटो में कितनी होगी?
a) 35 m
(b) $42 m$)
C) 49 m
d) 56 m

Soln:-
figure
माना $A B=x, \therefore B D=5 x$ तथा $B C=5 x-138$ $\left[\because \tan a=\frac{A B}{B D}=\frac{1}{5}\right]$
अब,

$$
\begin{aligned}
\because \tan \beta & =\sqrt{\sec ^{2} \beta-1} \\
9 \tan \beta & =\sqrt{\frac{193}{144-1}} \\
9 \tan \beta & =\sqrt{\frac{49}{144}} \\
9 \quad \frac{x}{5 x-138} & =\frac{7}{12} \\
912 x & =35 x-7 \times 138 \\
9 \quad 23 x & =\frac{7 \times 138}{} \\
9 x & =\frac{7 \times 1386}{23} \\
q x & =42 \mathrm{~m}
\end{aligned}
$$

$$
0^{2}
$$

ma

* यदि $x \cos \theta-y \sin \theta=\sqrt{x^{2}+y^{2}}$ तथा $\frac{\cos ^{2} \theta}{a^{2}}+\frac{\sin ^{2} \theta}{b^{2}}=\frac{1}{x^{2}+y^{2}}$ हो तो सही संबंध कौन सा है:-
a) $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
b) $\frac{x^{2}}{b^{2}}-\frac{y^{2}}{a^{2}}=1$
c) $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
d) $\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1$

Soln:- वर्ग कसने पर.

$$
\begin{align*}
& \text { करन पर. } \\
& x^{2} \cos ^{2} \theta+y^{2} \sin ^{2} \theta-2 x y \cos \theta \cdot \sin \theta=x^{2}+y^{2} \\
& \text { a } x^{2}-x^{2} \cos ^{2} \theta+y^{2}-y^{2} \sin ^{2} \theta+2 x y \sin \theta \cdot \cos \theta=0 \\
& a x^{2}\left(1-\cos ^{2} \theta\right)+y^{2}\left(1-\sin ^{2} \theta\right)+2 x y \sin \theta \cdot \cos \theta=0 \\
& 9 x^{2} \sin ^{2} \theta+y^{2} \cos ^{2} \theta+2 x y \sin \theta \cdot \cos \theta=0 \\
& \& \quad(x \sin \theta+y \cos \theta)^{2}=0 \\
& \& \quad x \sin \theta=-y \cos \theta \tag{i}\\
& \& \quad x^{2} \sin ^{2} \theta=y^{2} \cos ^{2} \theta-\text { (i) }
\end{align*}
$$

अब, $\frac{\cos ^{2} \theta}{a^{2}}+\frac{\sin ^{2} \theta^{\prime}}{b^{2}}=\frac{1}{x^{2}+y^{2}}$

$$
\begin{aligned}
& \frac{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta}{a^{2} b^{2}}=\frac{1}{x^{2}+y^{2}} \\
\Leftrightarrow & \frac{x^{2} b^{2} \cos ^{2} \theta+x^{2} a^{2} \sin ^{2} \theta+y^{2} b^{2} \cos ^{2} \theta+y^{2} a^{2} \sin ^{2} \theta}{a^{2} b^{2}}=1
\end{aligned}
$$

[By putting value of $\begin{aligned} & \text { Ean 1] }\end{aligned} \& \frac{a^{2} b^{2} \cos ^{2} \theta+\sqrt{y^{2} a^{2} \cos ^{2} \theta}+\sqrt{x^{2} b^{2}} \sin ^{2} \theta \mid+y^{2} a^{2} \sin ^{2} \theta}{a^{2} b^{2}}=1$
a $\frac{x^{2} b^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right)+y^{2} a^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right)}{a^{2} b^{2}}=1$
$9 \quad \frac{x^{2} b^{2}+y^{2} a^{2}}{a^{2} b^{2}}=1$ $\left[\because \sin ^{2} \theta+\cos ^{2} \theta=1\right]$
$9 \quad \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

* पिछले प्रश्न में हम समीकरण (i) प्राप्त करने के बाद उसे इस प्रकार से भी हल कर सकतें हैं।

$$
\begin{aligned}
& \because \frac{x^{2} \sin ^{2} \theta \pm y^{2} \cos ^{2} \theta}{y^{2}} x^{2} \\
& \therefore \sin ^{2} \theta=y^{2}, \cos ^{2} \theta=x^{2}
\end{aligned}
$$

अब,

$$
\begin{aligned}
& \frac{\cos ^{2} \theta}{a^{2}}+\frac{\sin ^{2} \theta}{b^{2}}=\frac{1}{x^{2}+y^{2}} \\
& 9 \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\frac{1}{\sin ^{2} \theta+\cos ^{2} \theta}\left[\because \sin ^{2} \theta=y^{2}, \cos ^{2} \theta=x^{2}\right] \\
& 9 \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
\end{aligned}
$$

* यदि $\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=1$ हो, तो $\frac{a^{2}}{b+c}+\frac{b^{2}}{a+c}+\frac{c^{2}}{a+b}=$?
a) 0
b) 1
c) 2
d) 3

Soln:- $\quad \frac{a^{2}}{b+c}+a+\frac{b^{2}}{a+c}+b+\frac{c^{2}}{a+b}+c-(a+b+c)$

$$
\begin{aligned}
& =\frac{a^{2}+a b+a c}{b+c}+\frac{b^{2}+b a+b c}{a+c}+\frac{c^{2}+c a+c b}{a+b}-(a+b+c) \\
& =\frac{a(a+b+c)}{b+c}+\frac{b(a+b+c)}{a+c}+\frac{c(a+b+c)}{a+b}-(a+b+c) \\
& =(a+b+c)\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)-(a+b+c) \\
& =(a+b+c) \times 1-(a+b+c) \\
& =(a+b+c)-(a+b+c) \\
& =0
\end{aligned}
$$

* $A B C D$ एक वर्ग है । D भुजा $A B$ पर एक ऐसा बिंदु है कि $A D: P B=1: 3$ भुजा $P C$ एवं विकर्ण $B D$ को मिलाने पर x पर प्रतिच्छोद करती है। यदि त्रिभुज $B \times C$ का क्षेत्रफल 24 वर्ग सेमी० हो तो चतुर्भुज $A P \times D$ काक्षेत्रफल $=?$
a) $30 \mathrm{~cm}^{2}$
b) $32 \mathrm{~cm}^{2}$
C) $36 \mathrm{~cm}^{2}$
d) $38 \mathrm{~cm}^{2}$

Soln:- $\quad \triangle P X B$ तथा $\triangle C X D$ में,

$$
\begin{aligned}
& \angle X D C=\angle X B P \text { [एकांतर ato] } \\
& \angle X C D=\angle X P B[\\
& \angle C X D=\angle P X B[\text { शीबराभिभमुखcolo] } \\
& \therefore \triangle P X B \sim \triangle C X D \\
& \therefore \frac{B P}{C D}=\frac{13 X}{D X}=\frac{3}{4}
\end{aligned}
$$

Eigure:-

\because दोनो $\triangle B X C$ तथा $\triangle C X D$ की ऊँचाई $C O$ है।

$$
\begin{aligned}
& \therefore \quad \frac{A r \cdot \Delta B \times C}{A r \cdot \Delta C X D}= \frac{3}{4} \\
& \therefore A r \cdot \Delta C X D= \frac{4 \times 24}{3}=32 \mathrm{~cm}^{2} \\
& \frac{A r \cdot \triangle B \times P}{A r \cdot \triangle C X D}=\frac{(B P)^{2}}{(C D)^{2}} \\
& \therefore A r \cdot \triangle B \times P= \frac{32 \times 9}{16}=18 \mathrm{~cm}^{2} \\
& A r \cdot \triangle A B D=A r \cdot \triangle C B D=(4 r \cdot \Delta B X C+A r \cdot \Delta C \times D) \\
&=(32+24) \mathrm{cm}^{2} \\
&=56 \mathrm{~cm}^{2} \\
& \therefore A r \cdot \square A P X D= A r \cdot \triangle A B D-4 r \cdot \triangle B \times P \\
&=(56-18) \mathrm{cm}^{2} \\
&=38 \mathrm{~cm}^{2}
\end{aligned}
$$

* $4 x^{2}+4 x+9$ का न्यूनत्तम मान कितना होगा?
a) 4
b) 6
c) 8
d) 9

Soln:- $\quad 4 x^{2}+4 x+9=4 x^{2}+4 x+1+8=(2 x+1)^{2}+8$
न्यूनत्तम मान के लिए रेखांकित भाग का मान 0 होना चाहिए

$$
\therefore \text { न्यूनत्तम मान }=8
$$

* एक लंबवृत्तीय शंकु को ऊँचाई की अनुरुप तीन बराबर हिस्सों में काटा जाता है। इस प्रकार निर्मित भागों के आयतन का अनुपात क्या टोगा ?
a) $1: 4: 9$
b) $1: 7: 19$
c) $1: 3: 5$
d) $1: 8: 27$

Eiqure:-2
figure:-3
figure:-4

C

ऊँचाई	A	$13:$	C
आयतन	$1: 8: 27$		

\therefore पहला भाग $(A)=1$
दूसरा भाग $(B-A)=(8-1)=7$
तीसरा भाग $(C-B)=(27-8)=19$.
\therefore अभीष्ट अनुपात $=1: 7: 19$

* दो वृत्त एक दूसरे को अंद्र से स्पर्श करतें है (P बिंदु पर) बाड़ वृत्त पर $P A$ तथा $P B$ दो जीवा खींची जाती है जो छोटे वृत्त को क्रमश: C तथा D पर प्रतिचहांद करती है। यदि कोण $C D B=120^{\circ}$ तो $\angle A B P$ का मान वाया होगा?
a) 30°
b) 60°
c) 90°
d) 120°

Soln:- P पर स्पश्न रेखा EF खोंचा गया।

$$
\because \angle C D P=\angle C P E \text { [एकातरवृत्तखंड] }
$$

$$
\text { तथा, } \angle A B P=\angle A P E[\text { " " }]
$$

$$
\begin{aligned}
\therefore \angle C D P & =\angle A B P \\
\because \angle C D P & =180^{\circ} \angle C D B \\
& =180^{\circ}-120^{\circ}=60^{\circ} \\
\therefore \angle A B P & =60^{\circ}
\end{aligned}
$$

Generated by CamScanner from intsig.com

* I तथा O त्रिभुज $A B C$ के क्रमशः अंतः केंद्र तथा परिकेंद्र हैं। $A I$ को आगे बढ़ाने पर वह त्रिभुज $A B C$ के परिवृत को D पर मिलता है। यदि $\angle A B C=x$ $\angle B I D=y$ तथा $\angle B O D=z$ हो तो $\frac{x+z}{y}$ का मान क्या होगा?
a) 1
b) 2
c) 3
d) 4

Soln:-
\because 工 अंतः केंद्र है अतः $B I, \angle A B C$ का द्विभाजक होगा।

$$
\therefore \angle A B I=\frac{\angle A B C}{2}=\frac{x}{2}
$$

$\because 0$ परिकेंद्र है

$$
\begin{aligned}
& \therefore \angle B A D=\frac{\angle B O D}{2}=\frac{z}{2} \\
& \angle B I D=\angle A B I+\angle B A D \text { [बाह्य कोण] } \\
& \therefore \quad y=\frac{x+z}{2} \\
& \quad \therefore \frac{x+z}{y}=2
\end{aligned}
$$

* यदि $2 \operatorname{cosec} \theta=\left(v+\frac{1}{y}\right)$ हो, तो $\cot \theta$ का मान वया होगा?
a $\frac{1}{2}\left(y-\frac{1}{y}\right)$
b) $\frac{1}{4}\left(y-\frac{1}{y}\right)$
c) $\left(y-\frac{1}{y}\right)$
d) $\left(y+\frac{1}{v}\right)$

Soln:-

$$
\cot ^{2} \theta=\operatorname{cosec}^{2} \theta-1
$$

$$
\text { a } \cot ^{2} \theta=\frac{\left(v^{2}+1\right)^{2}}{4 v^{2}}-1
$$

$$
q \cot ^{2} \theta=\frac{y^{4}+1+2 y^{2}-4 y^{2}}{4 y^{2}}
$$

$$
9 \cot ^{2} \theta=\frac{\left(y^{2}-1\right)^{2}}{4 y^{2}}
$$

$$
9 \cot \theta=\frac{\left(y^{2}-1\right)}{2 y}
$$

$$
=\frac{1}{2}\left(y-\frac{1}{y}\right)
$$

Generated by CamScanner from intsig.com

$$
\begin{aligned}
& \because 2 \operatorname{cosec} \theta=\frac{y^{2}+1}{y} \\
& \text { c) } \operatorname{cosec} \theta=\frac{y^{2}+1}{2 y}=\frac{h}{p} \\
& \begin{aligned}
\therefore b & =\sqrt{n^{2}-p^{2}} \\
& =\sqrt{\left(y^{2}+1\right)^{2}-(2 y)^{2}} \quad \text { or, }
\end{aligned} \\
& =\sqrt{y^{4}+1+2 y^{2}-4 y^{2}} \\
& =\sqrt{y^{4}+1-2 y^{2}} \\
& =\sqrt{\left(y^{2}-1\right)^{2}} \\
& =\left(y^{2}-1\right) \\
& \begin{aligned}
\quad=\cot \theta=\frac{b}{P} & =\frac{y^{2}-1}{2 y} \\
& =\frac{1}{2}\left(y-\frac{1}{y}\right)
\end{aligned} \\
& \begin{aligned}
\quad=\cot \theta=\frac{b}{P} & =\frac{y^{2}-1}{2 y} \\
& =\frac{1}{2}\left(y-\frac{1}{y}\right)
\end{aligned}
\end{aligned}
$$

* दो वृत्त जिनकी त्रिज्याएँ क्रमशः 3 cm तथा 4 cm है, इतनी दूरी पर है कि उनके अनुप्रस्थ स्पर्श रेखा एंवं उभयनिष्ठ स्पार्थ रेखाओं की लंबाई $1: 2$ के अनुपात में है। दोनो वृत्तों के केंद्रो के बीच की दूरी ज्ञात करें।
a) 6 cm
b) 8 cm
c) 7 cm
(d) $\sqrt{65} \mathrm{~cm}$

चित्र के अनुसार,

$$
\begin{aligned}
A B^{2} & =A C^{2}+B C^{2} \\
& =(7)^{2}+x^{2} \\
& =49+x^{2}
\end{aligned}
$$

समी०(i) तथा (ii) से,

$$
\begin{aligned}
\therefore \quad 49+x^{2} & =4 x^{2}+1 \\
9 \quad 3 x^{2} & =48 \\
9 \quad x^{2} & =16 \\
9 x & =4 . \\
\therefore \quad A B^{2} & =4 x^{2}+1 \\
9 A B^{2} & =64+1 \\
9 \quad A B & =\sqrt{65}
\end{aligned}
$$

* 2 cm मोटाई की एक ईंट एक पहिए को रोकन्न के लिए रखी गयी है। जहाँ पहिया जमीन को हूता है उस बिंदु से ईट के सतह की क्षैतिज दूरी 6 cm है। पहिये की त्रिज्या कितनी होगी?
a) 6 cm
b) 8 cm
c) 10 cm
d) 12 cm

Soln:- चित्रानुसार,

$$
\begin{gathered}
x^{2}-(x-2)^{2}=36 \\
\& x^{2}-x^{2}-4+4 x=36 \\
9 \quad 4 x=40 \\
\& x=10
\end{gathered}
$$

figure:-

Generated by CamScanner from intsig.com

* किसी मीनार के पाद से 160 m दूर स्थित किसी बिंदु से मीनार के शिएल का उन्नयण कोण θ है। मीनाए के आधार की और 100 m जान्न पर शिखर का उन्नयण कोण 2θ हो जाता है। तदनुसार उस मीनाए की ऊँचाई ज्ञात करें।
a) 60 m
b) 80 m
C) 100 m
d) 160 m

Soln:- Normal process:-

$$
\begin{aligned}
& \tan \theta=\frac{A B}{B D}=\frac{h}{160} \\
& \tan 2 \theta=\frac{A B}{B C} \\
& 9 \frac{2 \tan \theta}{1-\tan ^{2} \theta}=\frac{h}{60} \\
& 9 \frac{2 \times \frac{h}{160}}{1-\frac{h^{2}}{2560}}=\frac{h}{60}\left[\begin{array}{l}
\text { Atter solving the equation } \\
\text { We will get } h=80 \mathrm{~m}
\end{array}\right] \\
& \quad \quad h=80 \mathrm{~m}
\end{aligned}
$$

short process:-

$$
\begin{gathered}
\because \angle A C B=\angle A D C+\angle D A C \text { [बाइ्रcकोण] } \\
92 \theta=\theta+\angle D A C \\
9 \angle D A C=\theta \\
\triangle A C D \text { में: } \\
\angle A D C=\angle D A C \\
\therefore D C=A C=100 \mathrm{~m} \\
\text { अब } \triangle A B C \text { में } \angle A B C=90^{\circ} \\
\triangle C^{2}=B C^{2}+A B^{2} \\
9(100)^{2}=(60)^{2}+(4 B)^{2} \\
9 \quad A B=80 \mathrm{~m}
\end{gathered}
$$

figure:

* यदि $m=-5$ तथा $n=-3$ हो तो $m^{3}-3 m^{2}+3 m+3 n+3 n^{2}+n^{3}$ का मान वया होगा?
a) -152
b) -187
c) -201
d) -224

Soln:-

$$
\begin{aligned}
& \frac{m^{3}-3 m^{2}+3 m-1+n^{3}+3 n^{2}+3 n+1}{(m-1)^{3}+(n+1)^{3}} \\
& =(-5-1)^{3}+(-3+1)^{3} \\
& =(-6)^{3}+(-2)^{3} \\
& =(-216)+(-8) \\
& =-224
\end{aligned}
$$

* दिये गए चित्र में $A B C$ एक समकोण त्रिभुज है जो एक अर्धवृत्त पर बना हुआ है। भुजा $A B$ तथा $B C$ को व्यास मानकर दो अर्धवृत्त खींचा गया है। छायांकित भाग का क्षेत्रफल ज्ञात करें यदि त्रिभुज $A B C$ का क्षेत्रफल 37 वर्श सेमी० हो।
a) $18.5 \mathrm{~cm}^{2}$
b) $37 \mathrm{~cm}^{2}$
c) $74 \mathrm{~cm}^{2}$
d) $111 \mathrm{~cm}^{2}$

Soln:-
 $\frac{A B \text { तथा } B C \text { पर बने अर्धंवृत्त का क्षेत्रफल })-}{A C \text { पर बने अर्ध वत्त का क्षेत्रफल }}$ माना $A C=x, A B=y, B C=z$

$\therefore A C$ पर बने अर्दवृत्त का क्षेत्रफल $=\frac{1}{2}\left\{\pi \cdot\left(\frac{2}{2}\right)^{2}\right\}=\frac{\pi x^{2}}{8}$ $A B$ पर ". ". " $=\frac{1}{2}\left\{\pi\left(\frac{y}{2}\right)^{2}\right\}=\frac{\pi y^{2}}{8}$
$B C$ पर . . . $\quad n=\frac{1}{2}\left\{\pi\left(\frac{z}{2}\right)^{2}\right\}=\frac{\pi z^{2}}{8}$

$$
\therefore \triangle A B C \text { का क्षे० }+\frac{\pi y^{2}}{8}+\frac{\pi z^{2}}{8}-\frac{\pi x^{2}}{8}=\text { छायांकित भाग का क्षे० }
$$

9. $\triangle A B C$ का क्षे० $+\frac{8}{8}\left(\frac{y^{2}+z^{2}-x^{2}}{1}\right)=$ घायांकित भागतका क्षे०

$$
\left[\because y^{2}+z^{2}=x^{2}\right]
$$

$$
\text { द } \triangle A B C \text { काक्षण० } \frac{\pi}{8}\left(\frac{1}{x^{2}-x^{2}}\right)=\text { छायांकित भागकाक्षे० }
$$

$$
\text { \& } \triangle A B C \text { का क्षे० = घायांकित भाग का क्षे० }
$$

\therefore छायांकित भाग का क्षे० $=37 \mathrm{~cm}^{2}$

* DE, O केंद्र वाले वृत्त की एक स्पर्श रेखा है जो वृत्त को C पर स्पर्श करती है। A तथा B परिधि पर स्थित दो बिंदु है जैसा कि नींचे चित्र में दर्शार्या जा रहा है। यदि $\angle A C D=79^{\circ}$ तथा $\angle O B A=2 \angle O A C$ हो तो $\angle O C B$ का मान क्या होगा?
a) 11°
b) 22°
c 33°
d) 57°

Soln:-
$\because O C \perp D E$ [स्पर्शरेखा को कौर्द्स मिलने जर]

$$
\begin{aligned}
& \therefore \angle O C A=90^{\circ}-\angle A C D \\
&=90^{\circ}-79^{\circ}=11^{\circ} \\
& \therefore \angle O A C=11^{\circ}[\because O C=O A=\gamma] \\
& \therefore \angle O B A=\angle O A B=22^{\circ}[\text { Given }]^{\circ} \\
& \angle C A B=\angle O A C+\angle O A B \\
& \therefore C A B=11^{\circ}+22^{\circ}=33^{\circ} \\
& \angle \triangle A B=\angle B C E=33^{\circ}[\text { एकांतर कृत्तखंड के कोणि }] \\
& \because \angle O C B=90^{\circ} \angle B C E \quad[\because O C \perp D E] \\
&=90^{\circ}-33^{\circ} \\
&=57^{\circ}
\end{aligned}
$$

* यदि $a=\frac{\sqrt{x+2}+\sqrt{x-2}}{\sqrt{x+2}-\sqrt{x-2}}$ हो तो $a^{2}-a x$ का मान ज्ञात करें।
b) 0
c) \pm
d) 2

Soln:- By using componendo dividendo:-

$$
\begin{aligned}
& \frac{\sqrt{x+2}+\sqrt{x-2}}{\sqrt{x+2}-\sqrt{x-2}}=\frac{a}{1} \\
& 9 \frac{\sqrt{x+2}}{\sqrt{x-2}}=\frac{a+1}{a-1} \\
& \Rightarrow \quad \frac{x+2}{x-2}=\frac{\left(a^{2}+1\right)+2 a}{\left(a^{2}+1\right)-2 a} \text { [वर्ग कस्सपर] }
\end{aligned}
$$

Again appling componendo dividendo.

$$
\begin{gathered}
\frac{x}{x}=\frac{a^{2}+1}{2 a} \\
9 a^{2}+1=a x \\
\& a^{2}-a x=-1
\end{gathered}
$$

Generated by CamScanner from intsig.com

* यदि $x=\sqrt{4+\sqrt{4-\sqrt{4+\sqrt{4}}}-\alpha}$ हो तो x का मान कितना होगा?
a) 4
b) $(\sqrt{3}+1) / 2$
c) $(\sqrt{13}+1) / 2$
d) $(\sqrt{13}-1) / 2$

Soln:-
इस प्रश्न का हल एक सूत्र के प्रयोग से करेंगें।
यदि $x=\sqrt{a+\sqrt{a-\sqrt{a+\sqrt{a-}}}-\alpha \text { हो }}$
तो $x=\frac{\sqrt{4 a-3}+1}{2}$
यदि $x=\sqrt{a-\sqrt{a+\sqrt{a-\sqrt{a+}}} \cdots \alpha \text { हो }}$
तो $x=\frac{\sqrt{4 a-3}-1}{2}$
पूछा गया प्रश्न में $a+$ पहल आया है
अतः

$$
\begin{aligned}
x & =\frac{\sqrt{4 \times 4-3}+1}{2} \\
& =\frac{\sqrt{13}+1}{2}
\end{aligned}
$$

* एक समकोण त्रिभुज में लंब तथा आधार का मान क्रमशः a तथा b है। इस त्रिभुज में बनाये जा सकने वाले सबसे बड़े वर्श का क्षेत्रफल व तथा 15 के पद में क्या होगा?
a) $\frac{a+b}{a b}$
b) $\frac{a b}{a+b}$
c) $\left(\frac{a+b}{a b}\right)^{2}$
d) $\left(\frac{a b}{a+b}\right)^{2}$

Soln:- माना वर्ग की भुजा $=x$
figure:-

$$
\begin{aligned}
& \triangle A B C \text { का क्षे० }=\triangle \triangle B D C \text { काक्षण } \triangle C B D \text { का क्षे० } \\
& \text { a, } \frac{1}{2} \times a \times b=\frac{1}{2} \times A B \times F D+\frac{1}{2} \times B C \times D E \\
& \text { a } \frac{1}{2} \times a \times b=\frac{1}{2} \times a \times x+\frac{1}{2} \times b \times x \\
& \text { a) } \frac{1}{2} \times a \times b=\frac{1}{12} \times x(a+b)
\end{aligned}
$$

$$
\begin{aligned}
& \text { a) } \quad x=\frac{a b}{a+b} \\
& \therefore \text { वर्ग का क्षेत्रफल }=x^{2}=\left(\frac{a b}{a+b}\right)^{2}
\end{aligned}
$$

* O केंद्र वाले वृत्त में प्रत्येक 6 cm लंबी दो समान जीवा $A B$ तथा $A C$ है। यदि वृत्त की त्रिज्या 5 cm हो तो BC का मान ज्ञात करें।
a) 2.4 cm
b) 4.8 cm
c) 9.6 cm
d) 6 cm

Soln:-

$$
\begin{aligned}
\because B O^{2}-O D^{2} & =A B^{2}-A D^{2}\left[B D^{2}\right] \\
9(5)^{2}-(x)^{2} & =(6)^{2}-(5-x)^{2} \\
925-x^{2} & =36-25-x^{2}+10 x \\
910 x & =50-36 \\
910 x & =14 \\
9 x & =7 / 5 \\
\therefore B D & =\sqrt{25-(7 / 5)^{2}} \\
& =\sqrt{25-49} 25 \\
& =\sqrt{\frac{625-49}{25}} \\
& =\sqrt{\frac{576}{25}}=\frac{24}{5} \\
\therefore B C & =2 B D=2 \times \frac{24}{5}=9.6 \mathrm{~cm}
\end{aligned}
$$

Figure:-

* यदि $\frac{b-c}{a}+\frac{a+c}{b}+\frac{a-b}{c}=1$ हो तथा $a-b+c \neq 0$ हो तो निम्न में से कौन सा सत्य होगा?
a) $\frac{1}{c}=\frac{1}{a}+\frac{1}{b}$
(b) $\frac{1}{a}=\frac{1}{b}+\frac{1}{c}$
c) $\frac{1}{b}=\frac{1}{a}+\frac{1}{c}$
d) $\frac{1}{b}=\frac{1}{c}-\frac{1}{a}$

Soln:-

$$
\begin{aligned}
& \quad \frac{b-c}{a}+\frac{a+c}{b}+\frac{a-b}{c}=1 \\
& 9 \frac{a+c}{b}+\frac{a-b}{c}=1-\frac{(b-c)}{a} \\
& a \frac{a+c}{b}=-\frac{a-b}{c}+1=\frac{a-b+c}{a} \\
& c \frac{a-b+c}{b}+\frac{a-b+c}{c}=\frac{a-b+c}{a} \\
& 9 \frac{(a-b+c)\left\{\frac{1}{b}+\frac{1}{c}\right\}=(a-b+c)\left\{\frac{1}{a}\right\}}{} \quad 9 \quad \frac{1}{a}=\frac{1}{b}+\frac{1}{c}
\end{aligned}
$$

* एक वृत्त जिसका केंद्र O है की दो जीवाएँ $2 a$ तथा $2 b$ समकोण पर प्रतिच्छेद करती है। वृत्त के केंद्र से प्रतिच्छोदन बिंदु को मिलाने पर C लंबाई का एक रेख्व प्राप्त होता है। वृत्त की त्रिज्या का मान a, b तथा c के पद में क्या होगा?
a) $\pm \sqrt{\frac{a^{2}+b^{2}-c^{2}}{2}}$
b) $\pm \sqrt{\frac{a^{2}+c^{2}-b^{2}}{2}}$
c) $+\sqrt{\frac{a^{2}+b^{2}+c^{2}}{2}}$
d) $\pm \sqrt{\frac{a^{2}+b^{2}+2 c^{2}}{2}}$

Soln:-

$$
\because b^{2}+x^{2}=a^{2}+y^{2}
$$

केंद्र O से जीता $2 a$ ताथा $2 b$ पर क्रमश: Y तथा x लंब डाला गया जो कि जीटाओं को दो बराबर भागों में काटेगी ।

$$
\begin{aligned}
& \because y^{2}=c^{2}-x^{2} \\
& \therefore b^{2}+x^{2} a^{2}+c^{2}-x^{2} \\
& q 2 x^{2}=a^{2}+c^{2}-b^{2} \\
& G x^{2}=\frac{a^{2}+c^{2}-b^{2}}{2} \\
& \therefore \text { (1त्रिज्या) }{ }^{2}=b^{2}+\frac{x^{2}}{a} \\
&=b^{2}+\frac{a^{2}+c^{2}-b^{2}}{2} \\
& 9 r^{2}=\frac{2 b^{2}+a^{2}+c^{2}-b^{2}}{2} \\
& 9 \quad r= \pm \sqrt{\frac{a^{2}+b^{2}+c^{2}}{2}}
\end{aligned}
$$

[लमकान 4]

* O केद्र वाले एक वृत्त का व्यास $A B$ है। $C D$ एक जीवा है जो वृत्तकी त्रिज्या के बराबर है। $A C$ तथा $B D$ को बढाने पर P पर मिलती है। $\angle A P B=$?
a) 50°
(b) 60°
C) 70°
d) 45°

Soln:- $\quad \because O C=C D=O D=\gamma, \therefore \angle O C D=\angle O D C=\angle C O D=60^{\circ}$ figure:-

$$
\begin{array}{rl}
A O= & C O[\gamma] S O, \angle O A C=\angle O C A=x[\text { Let }] \\
O D= & O B[\gamma] S O, \angle O D B=\angle O B D=Y[\text { Let }] \\
\therefore \angle A C D+\angle D B O=180^{\circ}[\text { चrकीयय चतुभुज }] \\
9 & x+60^{\circ}+Y=180^{\circ} \\
& x+y=120^{\circ} \\
& \therefore \angle A P B=60^{\circ}\left[180^{\circ}-(x+y)\right]
\end{array}
$$

Generated by CamScanner from intsig.com

* यदि $\cos ^{2} a-\sin ^{2} a=\tan ^{2} \beta$ है, तो $\cos ^{2} \beta-\sin ^{2} \beta$ का मान क्या होगा?
a) $\cot ^{2} a$
b) $\cot ^{2} \beta$
c) $\tan ^{2} a$
d) $\tan ^{2} \beta$

Soln:-

$$
\begin{aligned}
& \because \cos ^{2} a-\sin ^{2} a=\tan ^{2} \beta \\
& 9 \cos ^{2} a-\left(1-\cos ^{2} \alpha\right)=\tan ^{2} \beta \\
& 9 \quad 2 \cos ^{2} \alpha-1=\tan ^{2} \beta \\
& 9 \quad 2 \cos ^{2} a=1+\tan ^{2} \beta \\
& 9 \quad 2 \cos ^{2} a=\sec ^{2} \beta
\end{aligned}
$$

Let, $\quad \cos ^{2} \beta-\sin ^{2} \beta=x$
उसी तरह $2 \cos ^{2} \beta-1=x$

$$
\begin{aligned}
& 92 \cos ^{2} \beta=x+1 \\
& 9 \frac{2}{\sec ^{2} \beta}=x+1
\end{aligned}
$$

$\sec ^{2} B$ का मान रखने पर,

$$
\begin{aligned}
& \frac{x}{x \cos ^{2} a}=x+1 \\
& 9 \sec ^{2} a-1=x \\
& 9 x=\tan ^{2} a
\end{aligned}
$$

* A, B तथा C एक वृत्त पर तीन बिंदु हैं। A पर स्पर्श रेखा बढी हुई $B C$ को τ पर मिलती हैं। $\angle B T A=40^{\circ}, \angle C A T=44, B C$ द्वारा वृत्त के केंद्र पर बनाये गए कोण का मान क्या होगा?
a) 84°
b) 96°
(c) 104°
d) 108°

Soln:-

$$
\begin{aligned}
\angle A B C & \left.=44^{\circ} \text { [एकातर वृत्तखंड }\right] \\
\angle A C B & =84^{\circ}[\text { बाह्यो कोणन CAT+CTA] } \\
\therefore \angle B A C & =188-\left(44^{\circ}+84^{\circ}\right) \\
& =180^{\circ}-128^{\circ} \\
& =52^{\circ}
\end{aligned}
$$

$\therefore \angle B O C=2 \times 52^{\circ}=104^{\circ}$ [वृत्व के केंद्र पर बना कोण परिधि पर बने कोण का दुगुना होता हैं।

* एक समद्विबाहु समकोण त्रिभुज का परिमाप 2 Dcm है। लदनुसार उस त्रिभुज का क्षेत्रफल कितने वर्श cm टोगा?
a) $(v 2+1) p^{2}$
b) $(\sqrt{2}-1) p^{2}$
c) $(3+2 \sqrt{ } 2) p^{2}$
d) $(3-2 \sqrt{2}) p^{2}$

Soln:-

$$
\begin{aligned}
& \because A B+B C+A C=2 P \\
& 9 \quad x+x+x \sqrt{2}=2 P \\
& 9 \quad x(2+\sqrt{2})=2 P \\
& q \quad x=\frac{2 P}{2+\sqrt{2}} \\
& 9 x=\frac{2 P(2-\sqrt{2})}{2^{2}-(\sqrt{2})^{2}}=P(2-\sqrt{2}) \\
& \begin{aligned}
\therefore \triangle \text { का क्ष } 0=\frac{1}{2} \times x^{2} & =\frac{1}{2} \times P^{2}(2-\sqrt{2})^{2} \\
& =\frac{1}{2} P^{2}(6-4 \sqrt{2}) \\
& 9 \frac{1}{2} \cdot P^{2} 2(3-2 \sqrt{2}) \\
& =(3-2 \sqrt{2}) P^{2}
\end{aligned}
\end{aligned}
$$

* यदि $\sec \theta=x+\frac{1}{4 x}$ हो तो $\sec \theta+\tan \theta$ का मान क्या होगा?
a) x
b) $2 x$
C) $4 x^{2}-1$
d) $2 x^{2}-1$

Soln:-

$$
\begin{aligned}
& \because \sec \theta=\frac{4 x^{2}+1}{4 x}=\frac{h}{b} \\
& \therefore P=\sqrt{n^{2}-b^{2}} \\
&=\sqrt{\left(4 x^{2}+1\right)^{2}-(4 x)^{2}} \\
&=\sqrt{16 x^{4}+1+8 x^{2}-16 x^{2}} \\
&=\sqrt{16 x^{4}+1-8 x^{2}}=\sqrt{\left(4 x^{2}-1\right)^{2}}=4 x^{2}-1 \\
& \therefore \quad \sec \theta+\tan \theta \\
& \therefore \quad \frac{4 x^{2}+1}{4 x}+\frac{4 x^{2}-1}{4 x}=\frac{8 x^{2}}{4 x}=2 x
\end{aligned}
$$

Generated by CamScanner from intsig.com

* 50 व्यकि है और 50 डिब्ब भी हैं। उनमें पहला व्यकि प्रत्यक डिबबे में 1 गोली रख दता है। दूसरा व्यकि हर दूसरे डिब्बे में 2 गोली रखता है। इसी तरह तीसरा व्यकि टर तीसरे डिब्बे में 3 गोली टखता है। इसी क्रम में 50 वाँ व्यकि कोलल 50 वें डिब्ब में 50 गोलियां एखता है। तदनुसार 50 वें डिब्बे में कुल कितनी गोलियाँ एखी गई?
a) 50
b) 75
c) 79
d) 93

Soln:-
1 ला व्यकि 50 वें डिब्बे में 1 गोली रखोगा

| रारा" "" " " | 2 | |
| :---: | :---: | :---: | :---: | :---: |
| 5 वाँ " " " | | 5 |

\therefore तर्क यह है कि 50 के जितने भी गुणनखंड है उन सब का योगफल 50 वें डिब्बे में एखी गोलियों के बराबर होगा।

$$
\begin{aligned}
\therefore 50= & (1 \times 50),(2 \times 25) ;(5 \times 10) \\
= & (1+2+5+10+25+50) \\
& =93
\end{aligned}
$$

* यदि $x^{2}+2=2 x$ हो तो $x^{4}-x^{3}+x^{2}+2$ का मान क्या होगा?
a) 0
b) 1
c) 2
d) x

Soln:-

$$
\begin{aligned}
& x^{2}+2=2 x \\
& 9 x^{4}+4+4 x^{2}=4 x^{2}[\text { दान आर वानक करनपर] } \\
& 9 x^{4}=-4 \\
& \text { तथा, } 2 x-2=x^{2} \Rightarrow 2(x-1)=x^{2} \Rightarrow(x-1)=\frac{x^{2}}{2} \\
& \therefore \frac{x^{4}-x^{3}+x^{2}+2}{}=-4-x^{2}(x-1)+2 \\
& =-4-x^{2} \cdot \frac{x^{2}}{2}+2 \\
& =-4-\frac{x^{4}}{2}+2 \\
& =-2-\frac{(-4)}{2} \\
& =-2+2=0
\end{aligned}
$$

Generated by CamScanner from intsig.com

* एक मीनार के आधार तल से क्षैतिज दिशा के दो लिंदुओं A तथा B से मीनार के शीर्ष का उन्नयण कोण क्रमशः 15° तथा 30° है। तदनुसार यदि A तथा B मीनार के एक ही दिशा में हो और $A B=48 \mathrm{~m}$ हो तो मीनार की ऊँचाई ज्ञात करें।
a) 20 m
b) 24 m
c) 36 m
d) 48 m

Soln:-

$$
\begin{aligned}
& \because d=h\left(\cot \theta_{1}-\cot \theta_{2}\right) \\
& 948=h\left({\cot 15^{\circ}}^{-}-\frac{\left.\cot 30^{\circ}\right)}{1}\right. \\
& 948=h(2+\sqrt{3}-\sqrt{3}) \\
& 9 \quad h=\frac{48}{2}=24 \mathrm{~m}
\end{aligned}
$$

* त्रिभुज $A B C$ में कोण $B=60^{\circ}$ तथा कोण $C=45^{\circ}$ और D भुजा $B C$ को $1: 3$ के अनुपात में विभाजित करता है तो $\sin \angle B A D / \sin \angle C A D=$?
a) $\sqrt{ } 2$
b) $\sqrt{3}$
c) $\sqrt{6}$ d) $\pm / \sqrt{6}$

Soln:- $A E \perp B C$ खींचा गया।

$$
\text { माना } E C=x \therefore A E=x \quad\left[\tan 45^{\circ}=1\right]
$$

$$
\therefore A C=\sqrt{2 x} \quad\left[\sqrt{x^{2}+x^{2}}=\sqrt{2 x^{2}}\right]
$$

$$
\sin 60^{\circ}=\frac{A E}{A B}
$$

$$
9 \frac{\sqrt{3}}{2}=\frac{x}{4 B} \Rightarrow A B=\frac{2 x}{\sqrt{3}}
$$

figure:-

$\because A D$ भुजा $B C$ को $1: 3$ के अनुपात मेंबांतत है।

$$
\begin{aligned}
& \therefore \frac{\text { Area. } \triangle A B D}{\text { Area } \triangle A C D}=\frac{1}{3} \\
& \therefore \frac{\frac{1}{2} \times A B \times A \sigma \times \sin \angle B A D}{\frac{1}{2} \times A C \times A D \times \sin \angle C A D}=\frac{1}{3} \\
& \text { a } \frac{\sin \angle B A D}{\sin \angle C A D}=\frac{1}{3} \times \frac{\sqrt{2} x}{2 \times \frac{\sqrt{3}}{2 X}}=\frac{\sqrt{6}}{6}=\frac{1}{\sqrt{6}}
\end{aligned}
$$

* एक समचतुर्भुज का परिमाप $2 p$ unit है और विकर्णो की लंबाई का योगा m unit है तो समचतुर्भुज का क्षेत्रफल कितना होगा?
a) $1 / 2\left(m^{2}-p^{2}\right)$
b) $1 / 2\left(p^{2}-m^{2}\right)$
(c) $1 / 4\left(m^{2}-p^{2}\right)$
d) $\pm 14\left(p^{2}-m^{2}\right)$

Soln:-
Eigure:-
माना कि, $A C=2 x$ तो, $O C=x$
तथा. $B D=2 y$ तो. $B O=y$
\therefore समचतुभ्भुज का क्षेत्रफल $\frac{1}{2} \times d_{1} \times d_{2}$

$$
\begin{aligned}
& =\frac{1}{z} \times 2 x \times 2 y=2 x y \\
& \because B D+A C=2(x+y) \quad \text { तथा. } B C=P / 2[4 र ि म ा प / 4] \\
& q \quad m=2(x+y) \\
& \quad 9 x+y=m / 2 \\
& \therefore \quad \triangle O B C \text { में, } \\
& B O^{2}+O C^{2}=13 C^{2} \\
& \quad 9 x^{2}+y^{2}=P^{2} / 4 \\
& \quad 9(x+y)^{2}-2 x y=P^{2} / 4 \\
& \quad \text { g } m^{2} / 4-2 x y=P^{2} / 4 \\
& \quad \text { \& } 2 x y=1 / 4\left(m^{2}-P^{2}\right) \\
& \therefore \text { समचतुभुज का क्षेत्रफल }=1 / 4\left(m^{2}-p^{2}\right)
\end{aligned}
$$

Short process:-
\because एक वर्गभी एक समचतुभुज होता है।
\therefore माना कियह एक वर्ग है।

$$
\begin{aligned}
& \therefore B C=P / 2 \\
& B D=m / 2[\because A C+13 D=m] \\
& \therefore C D^{2}=B D^{2}-B C^{2} \\
& a \quad a^{2}=\frac{1}{4}\left(m^{2}-p^{2}\right)
\end{aligned}
$$

\therefore समचतुर्भुज (वर्ग) का क्षेत्रफलः $1 / 4\left(m^{2}-p^{2}\right)$

* एक बड़े ठस गोले को गलाकर समरुप लंब वृत्ता कार शंकु बनारो जाते हैं जिनकी आधार की त्रिज्या एवं ऊँचाई गोल की त्रिज्या के बराबर है। इनमें से एक शंकु को गलाकर छोटा ठोस गोला बनाया जाता है। होटे गोले का पृष्ठीय क्षेत्रफल तथा बड़े गाले के पृष्ठीयक्षेत्रफल का अनुपात होगा:
a) $1: 2$
b) $1: 4$
c) $1: 2^{2 / 3}$
d) $1: 2^{4 / 3}$

Soln:-
\because गाले की त्रिज्या $(x)=$ शंकु की त्रिज्या $(x)=$ शंकुकी ऊं० (h)

$$
\therefore \quad \frac{4}{3} \pi r^{3}: \frac{x^{3}}{8} x^{2} \pi
$$

$$
4: 1
$$

\therefore बड़े गाले के चौथाई आयतन वाला एक शंकु होगा जिसका आयतन एक घोटे गोले के आयतन के बराबर होगा।

* a मीटर और b मीटर लंबाई की दो जीवा क्रमशः वृत्त के केंद्र पर 60° तथा 90° का कोण अंतरित करती है, निम्न में से कौन सा विकल्प सही हैं ?
a) $12=\sqrt{ } 2 a$
b) $a=\sqrt{2 b}$
c) $a=2 b$
d) $b=2 a$

Soln:-
माना $A B$ तथा $C D$ दो जीवाएँ है जो केंद्र figure:-
पर क्रमश: 60° तथा 90 के कोण बनाते है।
$\therefore A B O$ एक समबाहु \triangle होगा।

$$
\begin{aligned}
& \therefore \text { त्रिज्या }(40) /(B O)=a \\
& \therefore C O=O D=a \\
& \therefore C D=\sqrt{C O^{2}+O D^{2}} \cdot \sqrt{2 a^{2}}=\sqrt{2 a} \\
& \therefore C D=b=\sqrt{2 a}
\end{aligned}
$$

* $A D$ त्रिभुज $A B C$ के $\angle A B C$ के आंतरिक द्विभाजक का लंब है। $D E$ को D से होकर और $B C$ के समांतर बनाया जाता है जिससे $A C$ पर E लिंदु पर मिल सके। यदि $A C=12 \mathrm{~cm}$ है तो $A E$ की लंबाई कितनी होगी?
a) 3 cm
b) 4 cm
C) 6 cm
d) 8 cm

Soln:- $E D$ का बढ़ाया गया जो $A B$ ct F पर मिलती हैं Figure:-
$\therefore F E \| B C$

$$
\therefore \angle A F D=\angle F B D+\angle F D B=2 x \text { [बाह्यक कोण }]
$$

तथा. $\angle A D F=\angle A D B-\angle F D B=90^{\circ}-x$

$$
\begin{gathered}
\left.\therefore \quad \angle A F D+\angle \angle A D F+\angle F A D=180^{\circ}+\angle 90^{\circ}-x\right)+\angle F A D=180^{\circ} \\
9 \quad 9+\left(90+x+\angle F A D=180^{\circ}\right. \\
9 \quad 9 \quad \angle F A D=90^{\circ}-x \\
\therefore \angle F A D=\angle F D A \\
\therefore A F=F D-\text { (ii) }
\end{gathered}
$$

समीकरण (i) तथा (ii) से,

$$
\begin{aligned}
& \quad A F=F B \\
& \therefore \quad A E=E C \quad \text { [थल्स प्रमयस } \because F E \| B C \text {] } \\
& \therefore \quad A E+E C=12 \\
& \quad A E+A E=12 \\
& 9 \quad 2 A E=12 \\
& \quad A E=6
\end{aligned}
$$

$$
\begin{aligned}
& \text { माना } \angle A B C=2 x^{\circ} \\
& \therefore \angle F B D=\angle D B C=x \text { [आतररिका द्विभाजक] } \\
& \angle F D B=\angle D B C=x \text { [एकांतरकाणन] } \\
& \therefore \angle F B D=\angle F D B \\
& \therefore F B=F D
\end{aligned}
$$

* त्रिभुज $A B C$ के कोण A का समद्विभाजक $B C$ पर बिंदु D पर मिलता है। यदि $A B=4, A C=3$ तथा $\angle A=60^{\circ}$ हो तो $A D$ की लंबाई कितनी होगी?
a) $2 \sqrt{3}$
b) $12 \sqrt{3} / 7$
C) $15 \sqrt{3} / 7$
d) $6 \sqrt{3} / 7$

Soln:-

$$
\begin{aligned}
& \therefore \frac{1}{2} \times A C \times A B \times \sin 60^{\circ}=\frac{1}{2} \times A C \times 4 D \times \sin 30^{\circ}+\frac{1}{2} \times 4 B \times 4 D \times \sin 30^{\circ} \\
& \& \frac{1}{2} \times 3 \times 4^{2} \times \frac{\sqrt{3}}{2}=\frac{1}{2} \times A D \times \sin 30^{\circ}(A C+A B) \\
& \quad 6 \quad 6 \sqrt{3}=A D \times \frac{1}{2} \times(3+4) \\
& \quad 9 \quad 6 \sqrt{3}=A D \times \frac{1}{2} \times 7 \\
& \quad 9 \quad A D=12 \sqrt{3} / 7
\end{aligned}
$$

* यदि $a+b=1, c+d=1$ और $a-b=\frac{d}{c}$ तो $c^{2}-d^{2}$ का मान वया होगा
a) a / b
b) -1
(c) b / a d) 1

Soln:-

$$
\begin{aligned}
& \because(a+b)+(a-b)=1+\frac{d}{c} \\
& \text { a, } \quad 2 a=\frac{c+d}{c} \\
& \text { तथा, }(a+b)-(a-b)=1-\frac{d}{c} \\
& \therefore c^{2}-d^{2} \\
& \text { \& } 2 b=\frac{c-d}{c} \\
& =(c+d)(c-d) \\
& =1 \times(c-d) \\
& =1 \times b / a \\
& 9 \frac{a}{b}=\frac{1}{c-d}[: c+d=1] \\
& =b / a \\
& 9 c-d=\frac{13}{a}
\end{aligned}
$$

* त्रिभुज $A B C$ में, $\angle B A C$ का द्विभाजक $B C$ को D पर और त्रिभुज $A B C$ के परिवृत्त को E पर कारता है। यदि $A B: A D=5: 3$ हो तो $A E: A C=$?
a) $3: 5$
b) $5: 3$
c) $3: 2$
d) $2: 3$

Soln:- त्रिभुज $A B D$ तथा त्रिभुज $A E C$ में,

$$
\angle B A D=\angle E A C \text { [} \angle A \text { का द्विभाजक] }
$$

$\angle A B D=\angle A E C$ [समान चापद द्वारा जरिधि परसमानकणणं]

$$
\begin{aligned}
\therefore 2 t G \angle A D B & =\angle A C E \\
\therefore \triangle A B D & \sim \triangle A E C \\
\therefore \frac{A B}{A D} & =\frac{A E}{A C} \\
\therefore \frac{A E}{A C} & =\frac{5}{3}[\because A B / A D=5 / 3]
\end{aligned}
$$

तिगत पूद्ध गए प्रश्न से हम एक formula भी derive कर सकतें हैं।

$$
\begin{aligned}
& \because \frac{A B}{A D}=\frac{A E}{A C} \\
& 9 A B \cdot A C=A D \cdot A E \\
& 9 A B \cdot A C=A E(A E \cdot D E) \\
& 9 A B \cdot A C=A E^{2}-A E \cdot D E \\
& 9\left(A B \cdot A C+D E \cdot A E=A E^{2}\right.
\end{aligned}
$$

* यदि $a(\tan \theta+\cot \theta)=1, \sin \theta+\cos \theta=b$ हो तो a तथा 0 के बीच व्या संबंध है?
a) $2 a=b^{2}+1$
b) $b^{2}=2(a+1)$
c) $b^{2}=2(a-1)$
(d) $2 a=b^{2}-1$)

Soln:- $a\left(\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta}\right)=1 \quad \sin ^{2} \theta+\cos ^{2} \theta+2 \sin \theta \cdot \cos \theta=b^{2}$

$$
\begin{array}{ll}
\text { \& } a\left(\frac{1}{\sin \theta \cdot 0 \cdot 0)}\right)=1 \quad \text { \& } \quad 1+2 a=b^{2} \\
\& \sin \theta \cdot \cos \theta=a & \text { \& } 2 a=b^{2}-1
\end{array}
$$

* यदि $\frac{a^{2}-b c}{a^{2}+b c}+\frac{b^{2}-c a}{b^{2}+c a}+\frac{c^{2}-a b}{c^{2}+a b}=1$ हो, तो $\frac{a^{2}}{a^{2}+b c}+\frac{b^{2}}{b^{2}+a c}+\frac{c^{2}}{c^{2}+a b}=$?
a) 0
b) 1
c) 2
d) -1

Soln:-

$$
\begin{aligned}
& \because \quad \frac{a^{2}-b c}{a^{2}+b c}+\frac{b^{2}-c a}{b^{2}+c a}+\frac{c^{2}-a b}{c^{2}+a b}=1 \\
& \text { 9, } \frac{a^{2}-b c}{a^{2}+b c}+1+\frac{b^{2}-c a}{b^{2}+c a}+1+\frac{c^{2}-a b}{c^{2}+a b}+1=1+3 \\
& 9 \quad \frac{a^{2}-b c+a^{2}+b c}{a^{2}+b c}+\frac{b^{2}-c a+b^{2}+c a}{b^{2}+c a}+\frac{c^{2}-a b+c^{2}+a b}{c^{2}+a b}=4 \\
& \quad \& 2\left(\frac{a^{2}}{a^{2}+b c}+\frac{b^{2}}{b^{2}+c a}+\frac{c^{2}}{c^{2}+a b}\right)=42 \\
& \quad 9 \frac{a^{2}}{a^{2}+b c}+\frac{b^{2}}{b^{2}+c a}+\frac{c^{2}}{c^{2}+a b}=2
\end{aligned}
$$

* यदि $b c+a b+c a=a b c$ तो $\frac{b+c}{b c(a-1)}+\frac{a+c}{a c(b-1)}+\frac{a+b}{a b(c-1)}=$?
(a) 1)
b) 0
c) $-1 / 2$
d) $1 / 2$

Soln:-

$$
\begin{aligned}
& \therefore a b+a c=a b c-b c|a b+b c=a b c-a c| c+c a=a b c-a b \\
& \begin{array}{c}
a b+a c
\end{array}=b c(a-1)|9 a b+b c=a c(b-1)| a b c+c a=a b(c-1) \\
& \therefore \quad \frac{b+c}{b c(a-1)}+\frac{a+c}{a c(b-1)}+\frac{a+b}{a b(c-1)} \\
& \\
& =\frac{b+c}{a b+a c}+\frac{a+c}{a b+b c}+\frac{a+b}{b c+c a} \\
& \\
& =\frac{(b+c)}{a(b+c)}+\frac{(a+c)}{b(a+c)}+\frac{(a+b)}{c(a+1)} \\
& \\
& =\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \\
& \\
& =\frac{a b+b c+c a}{a b c} \\
&
\end{aligned}
$$

* यदि $2 x=\sqrt{a}+\frac{1}{\sqrt{a}}, a>0$. तो $\frac{\sqrt{x^{2}-1}}{x-\sqrt{x^{2}-1}}$ का मान वया होगा?
a) $a-1$
b) $a+1$
c) $1 / 2(a+1)$
d $1 / 2(a-1)$
Soln:-

$$
\begin{array}{rlr}
\because 2 x=\sqrt{a}+\frac{1}{\sqrt{a}} & \therefore \frac{\sqrt{x^{2}-1}}{x-\sqrt{x^{2}-1}} \\
q x=\frac{a+1}{2 \sqrt{a}} & =\frac{a-1}{2 \sqrt{a}} \\
c x^{2}=\frac{(a+1)^{2}}{4 a} & \frac{a+1}{2 \sqrt{a}-\frac{a-1}{2 \sqrt{a}}} \\
q x^{2}-1=\frac{(a+1)^{2}-4 a}{4 a} & =\frac{\frac{a-1}{2 \sqrt{a}}}{\frac{2}{2 \sqrt{a}}} \\
c \sqrt{x^{2}-1}=\sqrt{\frac{(a-1)^{2}}{4 a}} & =\frac{1}{2}(a-1)
\end{array}
$$

* यदि x और $1 / x$ को औसत A है तो x^{3} और $1 / x^{3}$ का औसत क्या होगा
a) $4 A^{3}-A$
(b) $4 A^{3}-3 A$
C) $4 A^{3}-2 A$
d) $4 A^{3}-4 A$

Soln!-
$\because x$ तथा $1 / x$ का औसत A है

$$
\begin{aligned}
& \therefore \quad x+\frac{1}{x}=24 \\
& \text { s } x^{3}+\frac{1}{x^{3}}+3 \cdot x \cdot \frac{1}{x}\left(x+\frac{1}{x}\right)=84^{3} \\
& \text { a } x^{3}+\frac{1}{x^{3}}+3 \times 2^{x} 4=84^{3} \\
& \text { द } x^{3}+\frac{1}{x^{3}}=8 A^{3}-64 \\
& \therefore x^{3} \text { तथा } 1 / x^{3} \text { का औसत }=\frac{8 A^{3}-6 A}{2} \\
& =\frac{x\left(4 A^{3}-3 A\right)}{x} \\
& =4 A^{3}-3 A
\end{aligned}
$$

* एक शंकु की त्रिज्या उसके ऊँचाई का $\sqrt{2}$ गुणा है। उस शंकु से अधिकत्तन आयतन वाला घन काटा जाता है। शंकु के आयतन का घान के आयतन से क्या अनुपात है?
a) $3.18 \pi: 1$
b) $2 \cdot 25 \pi: 1$
c) $2.35 \pi: 1$
d) $2.45 \pi: 1$

Soln:-
Figure:-1
Figure:-2

चित्रांकित शंकु से आधिकत्तम आकार (आयतन) वाला घान तभी संभव है जब शंकु के ऊँचाई के केंद्रक(0)से घन का विकर्ण गुजरता हो तथा कैंद्रक (0) धन के विवर्ण का मध्य बिंदु हो।

$$
\begin{aligned}
& \text { यदि } A E=h \text { तो } O E=h / 3 \text { [कंद्रक } 2: 1 \text { मेंबांटता है }] \\
& \text { ताधा, } B E=\sqrt{2} h \\
& \text { माना कि घन की प्रत्योक भुजा }=a \\
& \therefore \text { घन के विकर्ण का आधा }(O F)=\sqrt{3} a / 2 \\
& \text { तथा घन के आधार के विकर्ण का आधा }(F E)=\sqrt{2} a / 2
\end{aligned}
$$

\therefore चित्र (2) में,

$$
O F^{2}-F E^{2}=O E^{2}
$$

$$
s\left(\frac{\sqrt{3} a}{2}\right)^{2}-\left(\frac{\sqrt{2} a}{2}\right)^{2}=\left(\frac{h}{3}\right)^{2}
$$

$$
9 \quad \frac{a^{2}}{4}=\frac{\hbar^{2}}{9}
$$

$$
\Rightarrow \quad a^{2}=4 t^{2} / 9
$$

$$
\text { of } a=2 h / 3
$$

\therefore आयतन शंकु घन

$$
\frac{\pi(\sqrt{2} h)^{2} x h}{3}:\left(\frac{2 h}{3}\right)^{3}
$$

$$
\Rightarrow 2 \pi h^{2} / 8: 48 h^{3} / 279
$$

$$
\Rightarrow \quad 9 \pi / 4: 1
$$

$$
\Rightarrow \quad 2.25 \pi: 1
$$

* यदि $\frac{\sqrt{a+2 b}+\sqrt{a-2 b}}{\sqrt{a+2 b}-\sqrt{a-2 b}}=\sqrt{3}$ हो तो $a: b$ का मान क्या होगा?
a) $2: \sqrt{3}$
b) $\sqrt{3}: 4$
c) $\sqrt{3}: 2$
d) $4: \sqrt{3}$

Soln:- $\quad \frac{\sqrt{a+2 b}+\sqrt{a-2 b}}{\sqrt{a+2 b}-\sqrt{a-2 b}}=\frac{\sqrt{3}}{1}$
Componendo dividendo (योगांतर निष्पत्ति) करने पर

$$
\frac{\sqrt{a+2 b}}{\sqrt{a-2 b}}=\frac{\sqrt{3}+1}{\sqrt{3}-1}
$$

Square करने पर,

$$
\frac{a+2 b}{a-2 b}=\frac{4+2 \sqrt{3}}{4-2 \sqrt{3}}
$$

फिर comp. divd. करने पर.

$$
\begin{aligned}
\frac{a}{2 b} & =\frac{4}{2 \sqrt{3}} \\
9 \quad a & : b=4: \sqrt{3}
\end{aligned}
$$

* यदि $\frac{a+b}{\sqrt{a b}}=4$ हो तो $a: b$ क्या होगा?
a) 2:1
b) $1: 2$
c) $(\sqrt{3}+1):(\sqrt{3}-1)$
d) $(2+\sqrt{3}):(2-\sqrt{3}))$

Soln:-

$$
\begin{aligned}
& \frac{a+b}{\sqrt{a b}}=\frac{4}{1} \\
c \quad & \frac{a+b}{2 \sqrt{a b}}=\frac{2}{1}
\end{aligned}
$$

comp divd.

$$
\begin{aligned}
& \frac{a+b+2 \sqrt{a b}}{a+b-2 \sqrt{a b}}=\frac{2+1}{2-1} \\
9 & (\sqrt{a}+\sqrt{b})^{2} \\
(\sqrt{a}-\sqrt{b})^{2} & =\frac{3}{1} \\
9 & \frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}=\frac{\sqrt{3}}{1}
\end{aligned}
$$

Again comp dive.

$$
\begin{aligned}
& \text { 1d. } \frac{\sqrt{a}}{\sqrt{b}}=\frac{\sqrt{3}+1}{\sqrt{3}-1} \\
& \text { a) } \frac{a}{b}=\frac{4+2 \sqrt{3}}{4-2 \sqrt{3}}=\frac{2(2+\sqrt{3})}{2(2-\sqrt{3})}=\frac{2+\sqrt{3}}{2-\sqrt{3}}
\end{aligned}
$$

* यदि $a+\frac{1}{a}=-1$ हो तो $\left(1-a+a^{2}\right)\left(1+a-a^{2}\right)$ का मान क्या होगा?
a) -1
b) 1
c) -4
(d) 4

Soln:- $\quad a+\frac{1}{a}=-1$

$$
\begin{align*}
& a^{2}+1=-a /-a^{2}=1+a \tag{i}\\
& 9 a^{2}+a+1=0 \\
& 9(a-1)\left(a^{2}+a+1\right)=0 \\
& 9 a^{3}-1^{3}=0 \\
& 9 a^{3}=1 \text {........ii) } \tag{ii}
\end{align*}
$$

Now,

$$
\begin{aligned}
& \left(\frac{\left.1+a^{2}-a\right)\left(1+a-a^{2}\right)}{(-a-a)\left(-a^{2}-a^{2}\right)}\right. \\
& =-2 a \times-2 a^{2} \\
& =4 \frac{a^{3}}{1}=4
\end{aligned}
$$

* यदि $a+\frac{1}{b}=b+\frac{1}{c}=c+\frac{1}{a}$ हो तो $a^{2} b^{2} c^{2}$ का मान क्या होगा?
a) 1)
b) -1
c) 2
d) -2

Soln:-

$$
\begin{array}{lll}
& a+\frac{1}{b}=b+\frac{1}{c} & b+\frac{1}{c}=c+\frac{1}{a}
\end{array} \quad c+\frac{1}{a}=a+\frac{1}{b} .
$$

* एक समकोण त्रिभुज के दोनो न्यून कोण वाले शीर्णों से ख़ींची गई माध्यिकाएँ एक दूसट को 30° के कोरा पर प्रतिचछद करती है। यदि उस समकोल त्रिभुज के कर्ण की लंबाई उ unit है तो त्रिभुज काक्षेत्रफल वर्ग ईकाई में वया होगा?
a) $\sqrt{2}$
b) $\sqrt{3}$
c) 3
d) 9

Soln:-

$$
\begin{aligned}
& \because \quad A B^{2}+B C^{2}=A C^{2} \\
& \therefore V^{2}+x^{2}=9 \\
& B D=x / 2, B E=Y / 2 \\
& \therefore A D=\sqrt{A B^{2}+B D^{2}} \Rightarrow \sqrt{r^{2}+\left(\frac{x}{2}\right)^{2}} \\
& \Rightarrow \sqrt{\frac{4 y^{2}+x^{2}}{4}} \\
& \Rightarrow \sqrt{\frac{3 y^{2}+x^{2}+y^{2}}{4}} \\
& \Rightarrow \frac{\sqrt{3 y^{2}+9}}{2} \\
& \therefore F O=40 \times \frac{1}{3}=\frac{\sqrt{3 y^{2}+9}}{6} \quad[\because \text { केद्रक माधिएका को } 2: 1 \text { मे बारत्ता है] }
\end{aligned}
$$

उसी प्रकार.

$$
\begin{aligned}
& C E=\frac{\sqrt{3 x^{2}+9}}{2} \therefore C F=\frac{2 \sqrt{3 x^{2}+9}}{63}[C E \text { का } 2 / 3]
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \frac{1}{2} \times F D \times C F \times \sin 30^{\circ}=\left(\frac{1}{2} \times x \times y\right) \times \frac{1}{6} \\
& \Rightarrow \frac{1}{x} \times \frac{\sqrt{3 y^{2}+9}}{6} \times \frac{\sqrt{3 x^{2}+9}}{3} \times \frac{1}{2}=\frac{x y}{1 z 2} \\
& \Rightarrow \quad\left(\sqrt{3 y^{2}+9}\right)\left(\sqrt{3 x^{2}+9}\right)=6 x y \\
& \Rightarrow \quad\left(3 y^{2}+9\right)\left(3 x^{2}+9\right)=36 x^{2} y^{2} \quad \therefore \triangle A B C \text { का क्षेत्रफल } \\
& \Rightarrow \quad 9 x^{2} y^{2}+27\left(x^{2}+y^{2}\right)+81=36 x^{2} y^{2} \quad=\frac{1}{2} \times x x y \\
& \Rightarrow \quad 27 \times 5+81=36 x^{2} y^{2}-9 x^{2} y^{2} \\
& =\frac{2 \sqrt{3}}{2} \\
& \Rightarrow \quad 27 x^{2} y^{2}=24(9+3) \\
& =\sqrt{3} \\
& \Rightarrow \quad x^{2} y^{2}=12 \\
& \Rightarrow x H=2 \sqrt{3}
\end{aligned}
$$

* किसी अर्धवृत्त में बने अंतः वर्ग तथा पूर्ण वृत्त में बने अंतः वर्ग के क्षेत्रफलों का अनुपात क्या होगा यदि अर्धवृत σ पूर्ण वृत्त की त्रिज्याएं समान हो?
a) $2: 3$
b) $3: 4$
c) $2: 5$
d) $5: 7$

Soln:-

चित्र(I) से,

$$
\begin{array}{cc}
& a^{2}+\frac{a^{2}}{4}=r^{2} \\
\Rightarrow \quad \frac{5 a^{2}}{4}=r^{2} & \text { चित्त (2) से, } \\
\Rightarrow \quad a^{2}=\frac{4 r^{2}}{5} & \Rightarrow a=2 r \\
\Rightarrow a^{2}=2 r^{2}
\end{array}
$$

\therefore अंत वृत्त में बने वर्ग का क्षे० : पूर्णवृत मेंबने वर्ग का क्षे०

$$
\begin{gathered}
\Rightarrow \quad \frac{24 x^{2}}{5}: 2 x^{2} \\
\Rightarrow 2: 5
\end{gathered}
$$

* यदि $\cot \theta+\cos \theta=p$ तथा $\cot \theta-\cos \theta=q$ हो तो $\left(p^{2}-q^{2}\right)^{2}=$?
a) 16 pq
b) $8 p q$
C) $4 p q$
d) $12 p q$

Soln:-

$$
\begin{aligned}
\because p \times q & =(\cot \theta+\cos \theta)(\cot \theta-\cos \theta) \\
& =\cot ^{2} \theta-\cos ^{2} \theta \\
& =\frac{\cos ^{2} \theta}{\sin ^{2} \theta}-\cos ^{2} \theta \\
& =\frac{\cos ^{2} \theta\left(1-\sin ^{2} \theta\right)}{\sin ^{2} \theta} \\
& =\cot ^{2} \theta \cdot \cos ^{2} \theta .
\end{aligned}
$$

तथा.

$$
\begin{aligned}
p^{2}-q^{2} & =(\cot \theta+\cos \theta)^{2}-(\cot \theta-\cos \theta)^{2} \\
& =4 \cot \theta \cdot \cos \theta\left[\cdot(a+b)^{2}-\left(a-b^{2}\right)^{2}=4 a b\right] \\
\therefore\left(p^{2}-q^{2}\right)^{2} & =(4 \cot \theta \cdot \cos \theta)^{2} \\
& =16 \cot ^{2} \theta \cdot \cos ^{2} \theta \\
& =16 \overline{p q}
\end{aligned}
$$

- $\frac{\cos ^{3} \theta+\sin ^{3} \theta}{\cos \theta+\sin \theta}+\frac{\cos ^{3} \theta-\sin ^{3} \theta}{\cos \theta-\sin \theta}=$?
a) 1
b) -1

Soln:-

$$
\begin{aligned}
& \begin{array}{c}
\cos ^{3} \theta+\sin ^{3} \theta \\
\cos \theta+\sin \theta
\end{array}+\frac{\cos ^{3} \theta-\sin ^{3} \theta}{\cos \theta-\sin \theta} \\
& \text { Let } \cos \theta= a \cdot \sin \theta=b \\
& \frac{a^{3}+b^{3}}{a+b}+\frac{a^{3}-b^{3}}{a-b} \\
& \Rightarrow \frac{(a+b)^{3}-3 a b(a+b)}{a+b}+\frac{(a-b)^{3}+3 a b(a-b)}{a-b} \\
& \Rightarrow \frac{(a+b)\left\{(a+b)^{2}-3 a b\right\}}{(a+b)}+\frac{\left.(a-b)(a-b)^{2}+3 a b\right\}}{(a-b)} \\
&=(a+b)^{2}+(a-b)^{2} \\
&= 2\left(a^{2}+b^{2}\right) \Rightarrow 2\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=2 \times 1=2
\end{aligned}
$$

* यदि $(x)^{x \sqrt{x}}=(x \sqrt{x})^{x}$ हो तो x का मान क्या होगा?
a) 1
b) $3 / 2$
c) $9 / 4$
d) $4 / 9$

Soln:- इस प्रकार के प्रश्न में हम दोनो तरफ 'base' को बराबर कर आसानीपूर्वक हल कर सकतें हैं।

$$
\begin{aligned}
& (x)^{x \sqrt{x}}=(x \sqrt{x})^{x} \\
& \text { G }(\sqrt{x})^{2 x \sqrt{x}}=(\sqrt{x})^{3 x} \\
& \text { \& } 2 x \sqrt{x}=3 x \\
& \text { \& } \sqrt{x}=3 / 2 \\
& \text { a } x=9 / 4
\end{aligned}
$$

* यदि $x=2+\sqrt{3}$ हो, तो $x^{2}-4 x+2$ का मान क्या होगा?
a) 1
b) 2
c) 3
d) 4

Soln:- इस प्रकार के प्रश्न में जिस पद का मान निकालने को कहा गया हो उसमें कोई अलिरिक पद जोड़ घटा कर यदि उसे पूर्ण वर्श में परितर्तेत किया जा सके तो आवश्यक पद का मान ज्ञात करने में हमें काफी आसानी टोगी।

$$
\begin{aligned}
& x^{2}-4 x+2 \\
\Rightarrow & x^{2}-4 x+2+2-2 \\
\Rightarrow & x^{2}-4 x+4-2 \\
\Rightarrow & (x-2)^{2}-2 \\
\Rightarrow & (x+\sqrt{3}-x)^{2}-2 \\
\Rightarrow & (\sqrt{3})^{2}-2 \\
\Rightarrow & 3-2 \\
\Rightarrow & 1
\end{aligned}
$$

* यदि $x^{2}+a^{2}=y^{2}+b^{2}=a x+b y=1$ हो, तो $a^{2}+b^{2}$ का मान क्या होगा?
(a) 1
b) 2
c) 3
d) 0

Soln:-

$$
\begin{gathered}
\because x^{2}+a^{2}=y^{2}+b^{2}=a x+b y=1 \\
9\left(x^{2}+a^{2}\right)+\left(y^{2}+b^{2}\right)=1+1 \\
9\left(x^{2}+a^{2}\right)+\left(x^{2}+b^{2}\right)=2 \\
9 \times\left(x^{2}+a^{2}\right)+\left(y^{2}+b^{2}=2(a x+b y)\right. \\
9\left(x^{2}+a^{2}-2 a x\right)+\left(y^{2}+b^{2}-2 b y\right)=0 \\
9(x-a)^{2}+(y-b)^{2}=0 \\
9 \quad x-a=0, x=a \\
y-b=0, y=b \\
\therefore \frac{x^{2}+a^{2}=1 \quad y^{2}+b^{2}=1}{a^{2}+a^{2}=1 \quad b^{2}+b^{2}=1} \\
2 a^{2}=1 \quad 2 \quad 2 b^{2}=1 \\
a^{2}=\frac{1}{2} \quad b^{2}=\frac{1}{2} \\
\therefore a^{2}+b^{2}=\frac{1}{2}+\frac{1}{2}=1
\end{gathered}
$$

* यदि $x+\frac{1}{x}=\sqrt{3}$ हो तो $x^{17}+\frac{1}{x^{17}}$ का मान क्या होगा?
a) 1
b) 2
c) $\sqrt{3}$
(d) $-\sqrt{3}$

Soln:- $\because x+\frac{1}{x}=\sqrt{3}$ हो तो, $x^{3}+\frac{1}{x^{3}}=0 \Rightarrow x^{6}+1=0 \Rightarrow x^{6}=-1$

$$
\begin{aligned}
x^{17}+\frac{1}{x^{17}} & =\frac{x^{18}}{x}+\frac{x}{x^{18}} \\
& =\frac{\left(x^{6}\right)^{3}}{x}+\frac{x}{\left(x^{6}\right)^{3}} \\
& =\frac{-1}{x}+\frac{x}{-1}=-\left(x+\frac{1}{x}\right) \\
& =-\sqrt{3}
\end{aligned}
$$

Generated by CamScanner from intsig.com

* दिये गए चित्र में $\angle C A D$ एवं $\angle C B D$ का योगफल ज्ञात करें।

a) 100°
b) 120
c) 150°
d) 180°

Soln:- दिये गएँ चित्र को यदि अलग किया जाय

$$
\begin{aligned}
& \angle B C D=\angle B A C \\
& \angle B D C=\angle B A D
\end{aligned} \text { [कांतर वृत्तखंड के कोण] }
$$

अब $\triangle B C D$ में.

$$
\begin{aligned}
\angle B C D+\angle B D C+\angle C B D & =180^{\circ} \\
9 \quad \angle B A C+\angle B A D+\angle C B D & =180^{\circ} \\
9 \quad \angle C A D+\angle C B D & =180^{\circ}
\end{aligned}
$$

* यदि $x=\sqrt{2 \sqrt[3]{4 \sqrt{2 \sqrt[3]{4 \cdots}}} \alpha}$ हो तो x का मान क्या होगा? a) 0
b) 1
(c) 2
d) 4

Soln:-

$$
\begin{aligned}
\because x & =\sqrt{2 \sqrt[3]{4 \sqrt{2 \sqrt[3]{4}}} \alpha} \\
\therefore x^{2} & =2 \cdot \sqrt[3]{4 \sqrt{2 \sqrt[3]{4}}-\alpha} \\
9\left(x^{2}\right)^{3} & =(2)^{3} \cdot 4 \cdot \frac{\sqrt{2 \sqrt[3]{4}-}}{} \\
q x^{6} & =8 \times 4 \times x \\
\& x^{5} & =32 x \\
9 x^{5} & =32 \\
q x & =2
\end{aligned}
$$

Generated by CamScanner from intsig.com

* $A B C$ एक त्रिभुज है जिसकमे अंतः वृत की त्रिज्या 4 cm है तथा भुजा $B C$ को D पए स्पश्श करती है। यदि $B D=8$ तथा $C D=7$ हो तो भुजा $A B$ का मान कितना होगा?
a) 13 cm
(b) 14 cm
c) 15 cm
d) 16 cm .

Soln:-

$$
\begin{aligned}
\because B D & =B E[\text { बाह्य बिंदु से स्पर्श रेखा }] \\
C D & =C F[\\
A F & =A E[
\end{aligned}
$$

$$
B D=B E=8, C D=C F=7, A F=A E=x[\text { Let }]
$$

Short process:-
अगर $B D=a, C D=b$ तथा $A F=c$ हो तो,

$$
a+b+c=\frac{a b c}{r^{2}}
$$

प्रश्न में,

$$
\begin{aligned}
& B D=a=8, C D=b=7, \quad A F=c \\
& \therefore \quad 8+7+C=\frac{8 \times 7 \times C}{4^{2}} \\
& \text { e } \quad 15+c=\frac{756 c}{162} \quad \therefore A B=(8+c) \\
& \text { c) } 30+2 c=7 c \\
& =8+6 \\
& \text { द } 5 c=30, c=6 \\
& =14
\end{aligned}
$$

$$
\begin{aligned}
& \because r=\frac{\Delta}{S} \\
& {\left[\begin{array}{l}
S=\frac{30+2 x}{2}=15+x \\
\Delta=\sqrt{(15+x)(15+x-15)(15+x-8)(15+24)}
\end{array}\right.} \\
& \text { c. } 60+4 x=\sqrt{840 x+56 x^{2}} \\
& \text { a) } 3600+16 x^{2}+480 x=840 x+56 x^{2} \text { [Sq. both side] } \\
& \text { 9 } 40 x^{2}+360 x-3600=0 \\
& \text { a) } \quad x^{2}+9 x-90=0 \\
& \text { s } x^{2}+15 x-6 x-90=0 \\
& \text { \& }(x+15)(x-6)=0 \\
& x=-15[\text { Not possible }] \text { so, } x=6 \\
& \therefore A B=(8+x)=(8+6)=14
\end{aligned}
$$

* Derivation of formula :-

$$
\begin{aligned}
& \because \gamma=\frac{\Delta}{S} \\
& 9 \gamma=\frac{\sqrt{(a+b+c) a b c}}{(a+b+c)} \\
& 9 \gamma^{2}(a+b+c)^{2}=(a+b+c) a b c \\
& G(a+b+c)=\frac{a b c}{\gamma^{2}}
\end{aligned}
$$

Figure:-

2* यदि $x=\sqrt[3]{a+\sqrt{a^{2}+b^{3}}+\sqrt[3]{a-\sqrt{a^{2}+b^{3}}} \text { हो तो } x^{3}+3 b x \text { का मान cया होगा? } ? ~ ? ~}$
a) 0
b) a
(c) $2 a$
d) 1

Soln:-

$$
\begin{aligned}
& x^{3}=\left(\sqrt[3]{a+\sqrt{a^{2}+b^{3}}}+\sqrt[3]{a-\sqrt{a^{2}+b^{3}}}\right)^{3} \\
& 9 x^{3}=a+\sqrt{a^{2}+b^{3}}+a-\sqrt{a^{2}+b^{3}}+3 \sqrt[3]{a^{2}-\left(\sqrt{a^{2}+b^{3}}\right)^{2}} \cdot x \\
& 9 x^{3}=2 a+3 \sqrt[3]{a^{2}-a^{2}-b^{3}} x \\
& \& x^{3}=2 a-3 b x \\
& G x^{3}+3 b x=2 a
\end{aligned}
$$

* समांतर चतुर्भुज $A B C D$ में P तथा $Q, B C$ तथा $D C$ के मध्या बिंदु हो तो $\triangle A P Q$ का क्षेत्रफल कितना होगा यदि चतुर्भुज का क्षेत्रफल $24 \mathrm{~cm}^{2}$ हो?
a) $6 \mathrm{~cm}^{2}$
b) $9 \mathrm{~cm}^{2}$
c) $10 \mathrm{~cm}^{2}$
d) $12 \mathrm{~cm}^{2}$

Soln:- figure:-1

figure:-

Figure:-2

$$
\begin{aligned}
& \text { Ar. } \triangle P C Q=\frac{\text { Ar } \square A B C D}{8}=3 \mathrm{~cm}^{2} \\
& \therefore \text { Ar. } \triangle A P Q=\operatorname{Ar} \square A P C Q-A r \cdot \triangle P C Q \\
& =(12-3)=9 \mathrm{~cm}^{2}
\end{aligned}
$$

Generated by CamScanner from intsig.com

* एक त्रिभुज $A B C$ में $\angle B C A=60^{\circ}$ तथा $A B^{2}=B C^{2}+C A^{2}+x$ हो तो $x=$?
a) $(B C)(C A)$
B) - (BC) (CA)
C) $(A B)(B C)$
d) 0

Soln:-
figure:-
$B D \perp C A$ खींचा गया

$$
\begin{aligned}
& \cos 60^{\circ}=\frac{C D}{B C} \\
& \& \frac{1}{2}=\frac{C D}{B C} \\
& \& C D=\frac{B C}{2}
\end{aligned}
$$

अब.

$$
\begin{aligned}
A B^{2} & =\frac{B D^{2}}{}+\frac{A D^{2}}{} \\
& =B C^{2}-C D^{2}+(A C-C D)^{2} \\
& =B C^{2}-C D^{2}+A C^{2}+C D^{2}-2 \cdot A C \cdot C D \\
& =B C^{2}+A C^{2}-2 \cdot A C \cdot \frac{B C}{2} \\
\& A B^{2} & =B C^{2}+A C^{2}-A C \cdot B C \\
\therefore x & =-(B C) \cdot(A C)
\end{aligned}
$$

* यदि $x^{2}+x=5$ हो तो $(x+3)^{3}+\frac{1}{(x+3)^{3}}$ का मान कितना होगा?
a) 110
b) 125
c) 140
d) 225

Soln:-

$$
\begin{aligned}
& (x+3)^{3}+\frac{1}{(x+3)^{3}} \\
& =\left\{(x+3)+\frac{1}{(x+3)}\right\}^{3}-3^{(x+3) \cdot \frac{1}{(x+3)}}\left\{(x+3)+\frac{1}{(x+3)}\right\} \\
& =\left\{\frac{x^{2}+6 x+10}{x+3}\right\}^{3}-3\left\{\frac{x^{2}+6 x+10}{x+3}\right\} \\
& =\left\{\frac{x^{2}+x+5 x+10}{x+3}\right\}^{3}-3\left\{\frac{x^{2}+x+5 x+10}{x+3}\right\} \\
& =\left\{\frac{5 x+15}{x+3}\right\}^{3}-3\left\{\frac{5 x+15}{x+3}\right\} \\
& {\left[\begin{array}{c}
\because x^{2}+x=5,50 \quad 5 x+10+5 \\
=5 x+15
\end{array}\right]} \\
& =\left\{\frac{5(x+3)}{(x+3)}\right\}^{3}-3\left\{\frac{5(x+3)}{x+3}\right\} \\
& =125-15=110
\end{aligned}
$$

Generated by CamScanner from intsig.com

* यदि ' a ' मीटर व ' B ' मीटट ऊँचाई के दो खंभ ' p ' दूरी पर स्थित है, तो प्रत्येक खंभे के शीर्ष को विपरीत खंभे के पाद से मिलाने बाली रेखाओं के प्रतिच्छेद बिंदु की ऊंचाई क्या होगी?
a) $\frac{(a+b)}{a b}$
b) $\frac{b-a}{a b}$
c) $\frac{a b}{a+b}$
d) $\frac{a b}{b-a}$

Soln:-
माना कि $A D$ तथा $B C$ दो खंभे है
जिनकी ऊँचाई क्रमश: a तथा B है। $A C$ तथा $B D$ को मिलाने पर E पर प्रतिचछोद करतें हैं। $E F \perp A B$ तो $E F=\mathbb{R}, F B=x$ तो $A F=(P-x)$
$\triangle A B C$ में $\frac{A F}{A B}=\frac{E F}{B C}$

$$
\therefore \quad \frac{P-x}{P}=\frac{k}{b}
$$

$\triangle A B D$ में,

$$
\begin{aligned}
\frac{F B}{B A} & =\frac{E F}{A D} \\
9 \frac{x}{P} & =\frac{k}{a}
\end{aligned}
$$

दोनो समीकरणों को जोड़न्न पर,

$$
\frac{p-x}{p}+\frac{x}{p}=\frac{k}{a}+\frac{k}{b}
$$

a $\frac{p-x+x}{p}=\frac{k(a+b)}{b}$

$$
\text { q } k=\frac{a b}{a+b}
$$

* यदि $47 \cdot 2506=4 A+\frac{7}{B}+2 C+\frac{5}{0}+6 E$ हो तो $5 A+3 B+6 C+D+3 E=$?
a) 150.3603
(1)) 153.6003
c) 153.60005
d) 150.6030

Soln:-

$$
\begin{array}{c|c|c|c|c}
4 A+\frac{7}{B}+2 C+\frac{5}{D}+6 E=40+7+0.2+0.05+0.0006 \\
\text { So. } 4 A=40 & \frac{7}{B}=7 & 2 C=0.2 & \frac{5}{D}=0.05 & 6 E=0.0006 \\
A=10 & B=1 & C=0.1 & D=100 & E=0.0001
\end{array}
$$

then,

$$
\begin{aligned}
& 5 A+3 B+6 C+D+3 E \\
= & 5 \times 10+3 \times 1+6 \times 0.1+100+3 \times 0.0001 \\
= & 50+3+0.6+100+0.0003 \\
= & 153.6003
\end{aligned}
$$

Generated by CamScanner from intsig.com

* $A B C D$ एक समांतर चतुर्भुज है जिसमें $A B: A D=2: 1$ है। समातर चतुर्भुज का एक कोण 60° है। समांतर चतुभ्भुज को विकर्णों का अनुपात वया होगा?
a) $\sqrt{7}: \sqrt{3}$
b) $7: 3$
c) $\sqrt{7}: \sqrt{5}$
d) $7: 5$

Soln:- $D E \perp A B$ तथा $C F \perp A B$ खींचा गया। figure:$\triangle A D E$ में,

$$
\sin 60^{\circ}=\frac{D E}{A D}=\frac{D E}{x}
$$

$$
\text { G } \quad \frac{\sqrt{3}}{2}=\frac{D E}{x}
$$

$$
G D E=\sqrt{3} x / 2
$$

$$
\therefore \quad A E=\sqrt{x^{2}-\frac{3 x^{2}}{4}}=\frac{x}{2}
$$

$$
B E=A B-A E=2 x-\frac{x}{2}=\frac{3 x}{2}
$$

$$
\text { तथा, } A F=A B+B F=2 x+\frac{x}{2}=\frac{5 x}{2}
$$

$$
\begin{aligned}
\because \quad \frac{A C^{2}}{D B^{2}} & =\frac{A F^{2}+C F^{2}}{B E^{2}+D E^{2}} \\
\frac{A C^{2}}{D B^{2}} & =\frac{\left(\frac{5 x}{2}\right)^{2}+\left(\frac{\sqrt{3} x}{2}\right)^{2}}{\left(\frac{3 x}{2}\right)^{2}+\left(\frac{\sqrt{3} x}{2}\right)^{2}}[\because D E=C F]
\end{aligned}
$$

$$
\text { a } \frac{A B^{2}}{D B^{2}}=\frac{\frac{28 x^{2}}{4}}{\frac{12 x^{2}}{4}}
$$

$$
\text { a) } \frac{A C^{2}}{D B^{2}}=\frac{7}{3}
$$

$$
\text { a } \frac{A C}{D B}=\frac{\sqrt{7}}{\sqrt{3}}
$$

Short process:- यदि इस प्रकार के प्रश्न में कोण का मान 60° दिया हो तथा बड़ी भुजा का मान a और छोटी भुजा का मान b हो तो :-

$$
\begin{aligned}
& \text { बड़ा विकर्ण }=\sqrt{\frac{a^{2}+b^{2}+a b}{a^{2}+b^{2}-a b}} \\
& \therefore \quad \frac{A C}{D B}=\sqrt{\frac{(2)^{2}+(1)^{2}+2 \times 1}{(2)^{2}+(1)^{2}-2 \times 1}}=\frac{\sqrt{7}}{\sqrt{3}}
\end{aligned}
$$

Generated by CamScanner from intsig.com

* Derivation of formula:-
$D E \perp A B$ तथा $C F \perp A B$ खींचा गया $\triangle \triangle D E$ में,

$$
\begin{aligned}
& \sin 60^{\circ}=\frac{D E}{A D} \\
& \text { a } \frac{\sqrt{3}}{2}=\frac{D E}{D} \\
& \quad D E=\frac{b \sqrt{3}}{2} \\
& \therefore A E=\sqrt{A D^{2}-D E^{2}}=\sqrt{b^{2}-\frac{3 b^{2}}{4}}=\frac{b}{2} \\
& B E=A B-A E=a-\frac{b}{2}=\frac{2 a-b}{2} \\
& \text { तथा } A F=A B+B F=a+\frac{b}{2}=\frac{2 a+b}{2} \\
& \therefore \frac{A C^{2}}{B D^{2}}=\frac{A F^{2}+F c^{2}}{B E^{2}+D E^{2}}=\frac{\left(\frac{2 a+b}{2}\right)^{2}+\left(\frac{b \sqrt{3}}{2}\right)^{2}}{\left(\frac{2 a-b}{2}\right)^{2}+\left(\frac{(\sqrt{3}}{2}\right)^{2}} \\
& \quad 9 \frac{A C^{2}}{B D^{2}}=\frac{4 a^{2}+b^{2}+4 a b+3 b^{2}}{4 a^{2}+b^{2}-4 a b+3 b^{2}} \\
& \& \frac{A C^{2}}{B D^{2}}=\frac{4\left(a^{2}+b^{2}+a b\right)}{4 A\left(a^{2}+b^{2}-a b\right)} \\
& \& \frac{A C}{B D}=\sqrt{\frac{a^{2}+b^{2}+a b}{a^{2}+b^{2}-a b}}
\end{aligned}
$$

* यदि $x=\sqrt{a \sqrt[3]{b \sqrt{a \sqrt[3]{b-\cdots}}} \alpha}$ हो तो x का मान क्या होगा?
a) $\sqrt[3]{a^{3} b}$
b) $\sqrt{a^{3} b}$
c) $\sqrt[4]{a^{3} b}$
d) $\sqrt[5]{a^{3} b}$

Soln:- $\quad \because x=\sqrt{a \sqrt[3]{b \sqrt{a \sqrt[3]{b}}}-\alpha}$

$$
\begin{aligned}
G x^{2} & =a \cdot \sqrt[3]{b \sqrt{a \sqrt[3]{b}}}-\alpha \\
G\left(x^{2}\right)^{3} & =a^{3} \cdot b \cdot x \\
G x^{56} & =a^{3} b x \\
q x & =\sqrt[5]{a^{3} b}
\end{aligned}
$$

Generated by CamScanner from intsig.com

