\* एक बेलन की त्रिज्या 10 सेमी तथा अँचाई 4 सेमी है। तदन्सार, उस र्षलन की जिल्हा या अंचाई में कितने सेमी जोड़ी जाए, जिससे अस लेलन के आधलन में भी उतनी ही वृद्धि हो जाए? c> 25 d> 16 b> 4 (a) S) Soln:-भाना कि वृद्धि = 2 समी. .. त्रिज्या में वृद्धि पर आरातन = त (10+x) xh =  $\pi (10+\chi)^2 \times 4$ (12) Sult - - - - T(10)2x(4+x) .: प्रबनानुसार, 7 5100+x2+20x7 xh= x110 [4+x] 9 100h+hx2+20xh= 400+1002 & 400+4x2+80x= 400+100x 5 4x= 100x-802 9 4x = 20x 9 x = 5 cm. \* यदि 0 एक धनात्मक न्यूनकोण हो. और tan20. tan30=1 हो, तो (2 4052 50 - 1) का मान कितना होगा? 10> 工 c>1/2 (d) O a> -1/2 Soln:-0402 90' : tan 20. tan 30 = 1 : 20+30 m 9 tan 20 = 1 tan 30 .18 æ 0 " 2.055 5718 .1 9 tan 20, Cot 30 S tam 20 = tax (90-30) 1,0 9 20+30.90 9 0:90/5=18°  $20550 - 1 = 210545^{\circ} - 1 = 2x + -1 = -1 = 0$ 

\* Use emailor Region 
$$2x_{12} \pm 1$$
, with  $x_{12}$  emailor  $\frac{1}{6}$ , elle  $2x_{12} + 2x_{12}$   
(Ref  $x_{2} - y_{2} = 2$  of  $\frac{1}{2}$  sec  $x_{1} \pm 2\pi + 2\pi$  difference  $\frac{1}{2}$  by  $\sqrt{6}$ ) c)  $2\sqrt{6}$  d)  $\sqrt{6}/2$   
Solon:-  
· :  $(x_{1}y_{1}^{2} + (y_{2})^{2} = (x_{2})^{2}$   
· :  $(x_{2}y_{1}^{2} + (x_{2})^{2} = (x_{2})^{2}$   
· :  $(x_{2}y_{1}^{2} + (x_{2})^{2} = (x_{2})^{2}$   
· :  $(x_{2}x_{1}^{2} + (x_{2})^{2} = (x_{2})^{2}$   
· :  $(x_{2}x_{1}^{2} + (x_{2})^{2} = (x_{2})^{2}$   
· :  $(x_{2}x_{1}^{2} + (x_{2})^{2} = (x_{2})^{2}$   
· :  $(x_{2}y_{1}^{2} + (x_{2})^{2} = (x_{2})^{2}$   
· :  $(x_{2}^{2} + (x_{2})^{2} = (x_{2})^{2}$   
· :  $x_{2} = 6$ 

एक शंकु और एक जोलार्रा का आधार एक समान है और उनकी अंचाई भी एक समान है। तदनुसार, उनके कुल भूष्ठों का अनुपात कितना होगा ? c> v2:3 d> 2:3 a> v2+1:3) 1) /2-1:3 figure:-Soln:-": h= ~ : 12= h2+82 912, 282 9 J= V2r. · X8+X81 = N28+8 8(12+1) - V2+1 3782 - 38 - 38 - 38 - 3 \* यदि र वास्तविक संख्या हो एवं २+1 =0 हो और २३+1 =0 हो, तो (2++) भ का भान कितना होगा ? a> 4 (b> 9) c> 16 d> 25 Soln:-  $(\chi + \frac{1}{\chi})^3 = \chi^3 + \frac{1}{\chi_3} + 3\chi + (\chi + \frac{1}{\chi})$ g (x+ 1) 3= 3(x+1) 9 (x+1)2= 3  $9(x+\frac{1}{x})^4 = 9$ 121 - 6157 (- ) 4 1 1 1 4 1 1 1 F 84 1 Q & 201-15 - X1-11

\* एक कक्षा के चारभागों , , 13, c तथा 12 में झात्रों का ऑसत भार 60 किग्रा॰ है। किंतु भाग A, 13, c तथा 12 के छात्रों का अलग अलग ऑ-सत भार कमबा: 45, 50, त्र 2 तथा 80 किग्रा॰ है। तदनुसार, रादि भाग Aतथा 13 का समिलित औसत भार 48 किग्रा॰ हो और भाग 13 तथा c का समिलित औसतभार 60 किग्रा॰ हो तो भाग A, 13, c तथा 0 के धान्नों की संख्याओं का औसत कितना रोगा ?

c> (4:6:5:3) d> 3:4:5:6 a> 4:5,6:3 6> 4:3:5:6 Soln A B C 45 50 72 50 10 (A+B) x 2 (48+8)=56 4 : 6 : 5 1 = 3 × 8 2×8 (A+B+C) n 80 XXY · 42 B C : D 4 : 5 : 3 6

| 20                       |                                                                           |                                         |                 |
|--------------------------|---------------------------------------------------------------------------|-----------------------------------------|-----------------|
| * रादि २.                | +  = 4, (1 23+  23 05                                                     | मान कितना हो                            | ron ?           |
| a> 8                     | (6) 8支)                                                                   | c> 16                                   | a> 16호          |
| Soln:-                   | * x+4=4                                                                   | $\therefore  \chi^3 + \frac{4}{\chi^3}$ |                 |
|                          | g x2-4x+4=0                                                               | = 8+41                                  | and the factor  |
|                          | $9(x-2)^2 = 0$<br>9x=2                                                    | = 8±                                    |                 |
| ¥ एक नाफ़ी<br>= ० टें। ० | ਹ -ਪਰੁਖ਼੍ਰਿਯ ABCD ਸੈਂ AI<br>ਸਫ਼ਜੂਬਾਣ, 3ਬਸੇਂ 2 ABC                         | ও= BC , AD= DC<br>কিমক ৰহাৰহ হা         | , ACLIBD AUTZCA |
| a> 0                     | 6> 012                                                                    | (0) 20)                                 | a> 30           |
| Soln:-                   | . ∠CAD = 0<br>. ∠DCA = 0 (AD=0                                            |                                         | <u>0%6</u> 1-   |
|                          | ∴ ∠ADC = 180°-20<br>∴ ∠ABC = 180°-20<br>= 180°-(180<br>= 180°-180<br>= 20 | (तीनोका राजा=180)<br>)-20) (चक्रीयाय) A | e e             |
| JIG NE                   | या वाले एक वृत्त के व्यास<br>1 थदि जीवा PB = 12 से                        | मी॰ह, तो छही N                          |                 |
| 아 6章                     | 6> 12号                                                                    | 아 3특                                    | (山> 10章)        |
| Soln:-                   | +11-11 ab ON=2<br>.:: 144 - (7+2)2=                                       |                                         | BUTE 1-         |
|                          | 144 - 49 - x2+1<br>9 14x =                                                | 46                                      | BAINA           |
| 3                        | 9 2=<br>-' BN= BOTON                                                      | 1                                       |                 |
|                          |                                                                           | $4 = \frac{72}{7} = 1$                  | 0슻              |

\* एक दात की जीवाएँ AB तथा CD, E पर लेखवत प्रतिन्धेद करती है। खंड AE, EB और ED क्रमधाः 2, 6 तथा 3 cm लेखाई के हैं। प्रत के त्यासका मान कितना होगा ? a> 165 c> 65 d> 65/2 10> V65/2 Soln:figure 1-\* AEXEB = CEXED 2×6 = x×3 1. x= 4 3 OFL 48 तथा OG L CD खींचा जाया .: CG=GD= 7/2 (TET) AF= FB= 4 . EF=0G= 2 (AF-FE= 4-2=2) .. OC = JCG2+0G2  $= \int \left(\frac{1}{2}\right)^{2} + (2)^{2}$  $= \int \frac{49}{2} + 4$ V65/2 : प्रतिकात्वास = 2x8= 2x165 = 165 \* यदि - 12+1 = a 14 + b 12 + c Et at a+ b+ c of HIF an Etan ? a> 1 ( I>> O c> 2 d> J Soln:- $\frac{1}{2^{2/3}+2^{1/3}+1} = 0.2^{2/3}+62^{1/3}+C$ 9  $(2^{1/3}-1)$  $(2^{1/3}-1)(2^{2/3}+2^{1/3}+1) = 0.2^{2/3}+0.2^{1/3}+C$  $\frac{(2^{1/3}-1)}{(2^{1/3})^3-(1)^3} = 0^{2/3} + b^{2/3} + c$ . atbtc 9 21/3-1= a2 3+ b21/3+C = 0+X-X .. a=0, b=1, c=-1 = 0

Generated by CamScanner from intsig.com

\* 
$$A \Rightarrow 13 \text{ off} 000 20174360 \Rightarrow 197, 217 42 et at 1, 102 13 \pm 2 off at 2 det 3 6 http://doi.org/102 100 ft at 2 det 3 ft at 3 det 3 de$$

 $\hat{\mathbf{x}}$ 

| कोण कितना                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | elan ?                                                                            | A need to                                  | 2गाउ सेमी० है।                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nd a string of Rich   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| a> 15°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (1)                                                                               | 30°)                                       | c> 45°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | d> 60°                |
| Soln:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                   | (0)                                        | Fiau                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | me t-                 |
| ः त्रिभु                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ज का सबासे                                                                        | छोटा भुजा                                  | = VI3 ČI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A                     |
| [ Note:- यादे भावमे<br>भुषाओं को                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | धोटा भुजा निका<br>तर्ज कर दें। न                                                  | लने में कठिना                              | ई हो तो सभी С= 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | b=413                 |
| अब हमें शबसे                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | धोरा कांठा उ                                                                      | মহান ২০                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | a=7 C                 |
| अतः हम 'Cos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                   |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · · · LOSC                                                                        | - 02+1                                     | 2-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                   | $= \frac{a^2 + b}{2a}$                     | ab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                   |                                            | 48-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                   |                                            | 7×43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
| h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                   |                                            | 8412313<br>×7×413                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |
| A ST Sarte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | . 60                                                                              |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | INTER TRAIL           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                   | 2030: 10                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | The Derry Londe       |
| 1 NE (1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                   | 2C = 3                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 62 86.00              |
| Cosine TU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A R MARLEY MARRIED COMPANY AND IN COMPANY AND | And the second second second second second | a later a later and the second state and the se | त्रेभुज की तीन अल्ञा- |
| ওনদেহা ঃ-্বাড়াণ্ড                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ों का मान वि                                                                      | खा हो तथ                                   | ा किसी कोन का                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | मान्यातकस्ना हो।      |
| X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | मने वाला भु                                                                       |                                            | les a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                     |
| a factor of the second s | ਸਤਹਾਲਾ ਸੁ                                                                         |                                            | c/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | b                     |
| LB n<br>LC n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -1 h                                                                              | $\gamma = b$<br>$\gamma = c$               | B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                   |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | a c                   |
| (0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $SA = 12^2$                                                                       | $\frac{1+c^2-q^2}{2bc}$                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | sB = 0                                                                            | 2+ 2- 62                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                   | 200                                        | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BC =                                                                              | a2+62-0                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                   | 2ah                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |



| Salm.               | (5) 工)                                  | c} 2         | C                            | 174            |
|---------------------|-----------------------------------------|--------------|------------------------------|----------------|
| Solni-              | 1.1.2.1.1                               |              |                              | . 2.1          |
| :: a                | 4+ a2 122+ 154 =                        |              |                              | 5-)            |
| 9                   |                                         | 4 x ?        | <u>c</u> norient             | and the second |
|                     | 9 x =                                   |              | 2 Dat 2                      |                |
| <u> </u>            | a2+ab+b2=                               | 4            | 1 2                          |                |
|                     | - 22 = ab ± 12=                         |              | ਕੲ                           |                |
| 1                   | 2ab = 2                                 |              | de crist                     |                |
|                     | gab=                                    | 1 Mar Bar    | S. S.                        |                |
|                     | गोर 138 मी० चर्व<br>स्मारककी जेंचाई     |              |                              |                |
| a> 35m              | (b) 42                                  | λυ) (        | c> 49m                       | d> 56m         |
| Soln:-              | π AB= x, ∴ 130                          | )= 5x (1211) | <u>Figure</u><br>3C = 5x-138 | ÂI             |
| a refer             | mala shall be                           | [: tan       | a: 40 = 5                    | / 1            |
| अब, •               | * tanB = Sec                            | 2B-1         | 1                            | a B            |
| 1000                | 9 tan $\beta = \sqrt{\frac{19}{14}}$    | 34 - 1       | D                            | B              |
|                     | s tan B = J                             | 49           | - 13                         | ► 52-138-1     |
| 1 1 1 1 2 1 2 2<br> | 9 2 =================================== | ±            |                              |                |
|                     | 9 122 = 352                             | C - 7×138    |                              |                |
|                     |                                         | - VIOO       | 1110                         |                |
|                     | g 23x =                                 | +VT38        |                              |                |
|                     | 9 23x =                                 |              |                              |                |

\* 21% 
$$x \cos 0 - y \sin 0 = \sqrt{2^2 + y^2}$$
 (21)  $\cos^2 0 + \frac{\sin^2 0}{62} = \frac{1}{2^2 + y^2}$   $\frac{1}{2^2 + \frac{1}{2^2} = 1}$   
a)  $\frac{1}{8^2} - \frac{1}{8^2} = 1$  b)  $\frac{1}{8^2} - \frac{1}{8^2} = 1$  (c)  $\frac{1}{8^2} + \frac{1}{8^2} = 1$   
Soln:  $\cos 52^{\frac{1}{2}} + \frac{1}{8^2} = 1$  (c)  $\frac{1}{8^2} + \frac{1}{8^2} = 1$   
 $x^2 + \frac{1}{8^2} = 1$  b)  $\frac{1}{8^2} - \frac{1}{8^2} = 1$  (c)  $\frac{1}{8^2} + \frac{1}{8^2} = 1$   
Soln:  $\cos 52^{\frac{1}{2}} + \frac{1}{8^2} = 1$   
 $x^2 + \frac{1}{8^2} = 1$  b)  $\frac{1}{8^2} - \frac{1}{8^2} = 1$   
 $x^2 + \frac{1}{8^2} = 1$  (c)  $\frac{1}{8^2} + \frac{1}{8^2} = 1$   
 $x^2 + \frac{1}{8^2} = 1$   
 $x^2 + \frac{1}{8^2} = \frac{1}{8^2 + \frac{1}{8^2} = 1}$   
 $x^2 + \frac{1}{8^2} = \frac{1}{8^2 + \frac{1}{8^2} = 1}$   
 $x^2 + \frac{1}{8^2} = \frac{1}{8^2 + \frac{1}{8^2} = 1}$   
 $x^2 + \frac{1}{8^2} = \frac{1}{8^2 + \frac{1}{8^2} = 1}$   
 $x^2 + \frac{1}{8^2} = \frac{1}{2^2 + \frac{1}{8^2} = 1}$   
 $x^2 + \frac{1}{8^2} = \frac{1}{2^2 + \frac{1}{8^2} = 1}$   
 $x^2 + \frac{1}{8^2} = \frac{1}{2^2 + \frac{1}{8^2} = 1}$   
(c)  $\frac{1}{8^2} + \frac{1}{8^2} = \frac{1}{2^2 + \frac{1}{8^2} = 1}$   
 $x^2 + \frac{1}{8^2} = \frac{1}{2^2 + \frac{1}{8^2} = 1}$   
 $x^2 + \frac{1}{8^2} = \frac{1}{2^2 + \frac{1}{8^2} = 1}$   
 $x^2 + \frac{1}{8^2} = \frac{1}{2^2 + \frac{1}{8^2} = 1}$   
 $x^2 + \frac{1}{8^2} = \frac{1}{2^2 + \frac{1}{8^2} = 1}$   
 $\frac{1}{8^2} + \frac{1}{8^2} = \frac{1}{8^2 + \frac{1}{8^2} = 1}$   
 $\frac{1}{8^2} + \frac{1}{8^2} = \frac{1}{8^2 + \frac{1}{8^2} = 1}$ 

\* पिछले प्रश्न में हम समीकरण (i) प्राप्त करने के बाद उसे इस प्रकार से भी रख कर सकतें हैं।

\*\* ABCD एक वर्ड हैं । p भुषा AB पर एक ऐसा लिंदु है कि Ap: pB= 1:3  
भुषा pc एवं विकर्ण BD को भिलाने पर x पर प्रतित्तरंद करती हैं। एकि  
त्रिभुष BXc का क्षेत्रफल 24 वर्ड सिमी॰ हो तो-सत्तुभुमि ApXD का क्षेत्रफल-?  
a) 30 om<sup>2</sup> b) 32cm<sup>2</sup> c) 36cm<sup>2</sup> d) 38om<sup>2</sup>  
Soln:- 
$$\Delta PXB cent \Delta CXD Å;$$
 Eigues:-  
 $\Delta XCD = \Delta XB [unifeliagedom]$   
 $\therefore \Delta PXB ~ \Delta CXD$   
 $\therefore \Delta PXB ~ \Delta CXD$   
 $\therefore \Delta PXB ~ \Delta CXD$   
 $\therefore CD = \Delta XB [unifeliagedom]$   
 $\therefore \Delta PXB ~ \Delta CXD$   
 $\therefore BP = 13X = 3$   
 $\therefore CD = 13X = 3$   
 $A^{11}b^{-3}B$   
 $\therefore \Delta PXB ~ \Delta CXD$   
 $\therefore Ar. \Delta BXC = 3$   
 $A^{11}b^{-3}B$   
 $\therefore Ar. \Delta BXC = 3$   
 $A^{12}b^{-3}B$   
 $A$ 





\* (bet) 
$$\mu$$
[-region of the equation of the equatic the equatic the equation of the equation of the equation o

| * शदि m = -5 तथा                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n- astata                                        | n3 2m2+3m+3n+                                                          | 302+03 05 41-                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------|------------------------------|
| ধ্যা হীয়া গ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                  | 1-314-13.619                                                           | 11. 7. 9. 7. 7. 7. 9         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                  | c> - 201                                                               |                              |
| the second | mood Ko                                          |                                                                        | 12 Q.2 X4                    |
| γ <u>. 9366</u> .1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n <sup>3</sup> - 3m <sup>2</sup> + 3m <u>- 1</u> | L+n3+3n2+3n+                                                           | <u>dravala santo:</u>        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                  | $(n+1)^3$                                                              |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                  | (-3+1)3                                                                |                              |
| .2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                |                                                                        |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | = (-216)+                                        | (-8)                                                                   |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                  | Circle - 1                                                             |                              |
| * दिरो शए चित्रमें                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | АВС एक सम                                        | क्रीण त्रिभूज रुं जो ए                                                 | क अर्हावत्त पर खना           |
| हुआ है। भुजा तल                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | तथा छट को टर                                     | ग्रास मानकर दो अध                                                      | वित्त खींचा जया              |
| है। हमराकित भ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ाञा का क्षेत्रफलः                                | बात करें शदि त्रिभुज                                                   | АВС का क्षेत्रफल             |
| 37 तर्ज समी० हो                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Lister and                                       | 1-2-2-4-31                                                             |                              |
| a> 18.5 cm2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (b) 37 cm                                        | 2) c> 740m                                                             | $n^2$ d> $111 m^2$           |
| Soln:: ह्यारा किल                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | माग का क्षेत्रफत                                 | न = (2 ABC काक्षेण+                                                    | figure:-                     |
| ABOUNG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | परवने अर्धवृत्त                                  | का क्षेत्रफल) -                                                        |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ने अर्धवृत का क्षे                               | V V                                                                    |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $z = \chi, AB = \gamma,$                         | 1 - 1. 1. 101                                                          | t ć                          |
| and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ने अर्धतृत्वका क्षेत्र                           |                                                                        | 0                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E (n (Stan Ca)) a                                | $= \frac{1}{2} \left\{ \pi \left( \frac{\chi}{2} \right)^2 \right\} =$ | $= \frac{\pi \gamma^{2}}{8}$ |
| BC पर                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | = <u>(0</u> :1)                                  | $T = \frac{1}{2} \left\{ \pi \left( \frac{2}{2} \right)^2 \right\} =$  | <u>8</u>                     |
| - AABC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cor 20+ 1/2+                                     | $\frac{\pi z^2}{8} - \frac{\pi x^2}{8} = e_1 e_1 e_1 e_2$              | ्राम् विद्यास्य क            |
| . 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AABC. OFT 810 +                                  | $\frac{\pi}{8} \left( \frac{\chi^2 + z^2 - \chi^2}{z} \right) = 8$     | गचारित्मायादादी              |
| $\begin{bmatrix} \vdots  v^2 + z^2 = x^2 \end{bmatrix} \qquad $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | △ ABC OFTERD +                                   | $\frac{1}{8}(\frac{1}{2}(-x^2) = \frac{1}{8}$                          | SIINO ( HISINGIO             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | & AABC OT                                        | मह मुक्तांछा छ = वर्म<br>= 2 = वक्रि तक प्लाम्ह म                      | TCDT & O                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                  |                                                                        |                              |

\* 216 
$$x = \sqrt{4+\sqrt{4-\sqrt{4+\sqrt{4-4}}}}$$
  $x = \sqrt{2} (\sqrt{1} + \sqrt{4} + \sqrt{4-\sqrt{4+\sqrt{4-4}}}} x = \sqrt{2} (\sqrt{1} + \sqrt{2} + \sqrt{2} + \sqrt{2})/2$   
Soln: Set User on the two ests to value to total if  
 $216 x = \sqrt{2 + \sqrt{2-\sqrt{4+\sqrt{4-4}}}} x = \sqrt{2}$   
 $\sqrt{1} x = \sqrt{2 + \sqrt{2-\sqrt{4+\sqrt{4-4}}}} x = \sqrt{2}$   
 $\sqrt{1} x = \sqrt{2 + \sqrt{2-\sqrt{4+\sqrt{4-4}}}} x = \sqrt{2}$   
 $\sqrt{1} x = \sqrt{2 + \sqrt{2-\sqrt{4+\sqrt{4-4}}}} x = \sqrt{2}$   
 $\sqrt{1} x = \sqrt{2 + \sqrt{2-\sqrt{4}}} x = \sqrt{2}$   
 $\sqrt{1} x = \sqrt{2} + \sqrt{2} + \sqrt{2} + \sqrt{2}$   
 $\sqrt{1} x = \sqrt{2} + \sqrt{2} + \sqrt{2} + \sqrt{2}$   
 $\sqrt{1} x = \sqrt{2} + \sqrt{2} + \sqrt{2} + \sqrt{2} + \sqrt{2}$   
 $\sqrt{2} + \sqrt{2} + \sqrt{$ 

\* 0 this did quality with a come that at the unit of an AB den Ac to  
21 a grading from the total sector the and the total  
a) 2.4 cm b) 4.8 cm (a) 9.6 cm d) a com  
Solni-  
1: 80<sup>2</sup>-00<sup>2</sup> = AB<sup>2</sup>-AD<sup>2</sup> [80<sup>2</sup>]  
9 (5)<sup>2</sup>-(x)<sup>2</sup> = (6)<sup>2</sup>-(5-x)<sup>2</sup>  
9 25-x<sup>2</sup> = 36-25-x<sup>2</sup>+10x  
9 10x = 50-36  
9 10x = 14  
9 x = 4/5  
... BD = 
$$\sqrt{25-43}$$
  
 $= \sqrt{25-43}$   
 $= \sqrt$ 

\* एक वृत्त पिसका केंद्र ० है की दो जीवा एँ २० तथा २० हमाकोल पर  
% तिरहोद करती है। यूत्त के केंद्र हो भ्रतिरहोदन खिंदु को मिलाने पर a  
erand का एक रेखा प्राप्त होता है। यूत्त की जिप्सा का मान a, b तथा a  
के पद में वया होना?  
a) 
$$\pm \sqrt{a^2+b^2+c^2}$$
 b)  $\pm \sqrt{a^2+c^2-b^2}$   $orthogotherase
Soln:-
... b2 +  $\chi^2 = a^2 + \chi^2$   
 $653 0 \pm char a zer us b ut grants Y din
x era stern azer of the solitons of at
azer a stern azer of the solitons of at
 $\chi e^2 = 2^2+\chi^2$  [enaster a]  
 $\chi e^2 = 2^2+\chi^2 = a^2+c^2-\chi^2$   
 $g = \chi^2 = a^2+c^2-\chi^2$   
 $g = \chi^2 = a^2+c^2-b^2$   
 $g = \chi^2 = a^2+c^2-b^2$   
 $g = \chi^2 = 2b^2+a^2+c^2-b^2$   
 $g = \chi^2 = 2b^2+a^2+c^2-b^2$   
 $g = \chi^2 = 2b^2+a^2+c^2-b^2$   
 $\chi = b^2+a^2+c^2-b^2$   
 $\chi = b^2+a^2+$$$ 

\* 
$$\overline{vlq} \cos^2 a - \sin^2 a = \tan^2 \beta \overline{c} \cdot d1 \cos^2 b - \sin^2 \beta \operatorname{GH} \operatorname{IIII} \alpha \overline{vl} \operatorname{IIII} \alpha \overline{vl} \operatorname{IIII} \alpha \overline{vl} \alpha + \sin^2 \beta$$
  
 $a) \operatorname{Col}^2 a \quad b) \operatorname{Col}^2 \beta \quad (a) \operatorname{Ean}^2 a \quad d) \operatorname{Ean}^2 \beta$   
Soln:-  
''  $\operatorname{Cos}^2 a - \sin^2 a = \tan^2 \beta$   
 $\beta \operatorname{Cos}^2 a - (1 - \operatorname{Cos}^2 a) = \tan^2 \beta$   
 $\beta \operatorname{Cos}^2 a - (1 - \operatorname{Cos}^2 a) = \tan^2 \beta$   
 $\beta \operatorname{Cos}^2 a - 1 = \tan^2 \beta$   
 $\beta \operatorname{Cos}^2 a - 1 = \tan^2 \beta$   
 $\beta \operatorname{Cos}^2 a - 1 = \pi$   
 $\beta \operatorname{Cos}^2 b - 1 = \pi$   
 $\beta \operatorname{Cos}^2 \beta = \pi + 1$   
 $\beta - 2 - \pi + 1$   
 $\operatorname{Sec}^2 \beta \operatorname{GH} \operatorname{IIII} \alpha = \pi + 1$   
 $\beta \operatorname{Cos}^2 a - 1 = \pi$   
 $\beta \operatorname{Cos}^2$ 

\* UGE सम्मदिखादु समत्वर्गण त्रिभुज त्व परिमाप 2 p cm 
$$\mathring{c}_1$$
 (17,2110 3 to a figure 3 to a figure

\* 50 ਕਾਨੀ ਨੇ और 50 डिल्बे भी हैं। उनमें परला त्याति प्रत्येक डिल्बे में 1  
ant off रह बता है। दूसरा व्यक्ति हर दूसरे डिल्बे में 2 कोली रखता है।  
att off रख तता है। दूसरा व्यक्ति हर दोसरे डिल्बे में 3 कोली रखता है। कसी जम  
में 50 ता त्याति केवल 50 ते डिल्बे में 50 कोलियां रखता है। तदनुसार  
50 b) 75 c) 75 c) 79 d) 93  
Soln:  
1 ला व्यक्ति 50 ते डिल्बे में 1 कोली रखेगा  

$$271$$
 " " " 2 " "  
 $5 cat i " " " 2 " "
 $5 cat i " " " 2 " "$   
 $5 cat i " " " 2 " "
 $5 cat i " " " 2 " "$   
 $5 cat i E cat 50 the off and and gurned 5 c of the off and and the off and and the off and$$$ 

\* एक मीनार के आधार तल से हॉतिज दिशा के दो लिंदुओं A तथा 3 से मीनार के शीर्ष का उन्नराज कोज फ्रमशाः 15° तथा 30° दे। तदनुसार रादि A तथा 3 मीनार के एक ही दिशा में हो और A13= 48m हो तो मीनार की ऊँचाई ज्ञात करें।

a) 20 m (b) 24 m) c) 
$$36m$$
 d)  $48m$   
Soln:-  
.: d:  $h(\omega toi-\omega to to2)$   
9  $48 = h((\omega tis^{\circ} - (\omega t_{30})))$   
9  $48 = h(2+13^{\circ} - \sqrt{3}))$   
9  $48 = h(2+13^{\circ} - \sqrt{3}))$   
9  $h = 48 = 24m$   
 $48 = h(2+13^{\circ} - \sqrt{3}))$   
9  $h = 48 = 24m$   
 $48 = h(2+13^{\circ} - \sqrt{3}))$   
9  $h = 48 = 24m$   
 $48 = h(2+13^{\circ} - \sqrt{3}))$   
9  $h = 48 = 24m$   
 $48 = h(2+13^{\circ} - \sqrt{3}))$   
9  $h = 48 = 24m$   
 $48 = h(2+13^{\circ} - \sqrt{3}))$   
 $48 = h(2+13^{\circ} - \sqrt{3})$   
 $48 = h(2+13^{\circ} - \sqrt{3}))$   
 $48 = h(2+13^{\circ} - \sqrt{3}))$   
 $48 = h(2+13^{\circ} - \sqrt{3})$   
 $48 = h(2+13^{\circ} - \sqrt{3}))$   
 $48 = h(2+13^{\circ} - \sqrt{3})$   
 $50 = 4E$   
 $48 = h(2+13^{\circ} - \sqrt{3}))$   
 $48 = h(2+13^{\circ} - \sqrt{3})$   
 $48 = h(2+13^{\circ} - \sqrt{3})$   
 $51 = h(2+13^{\circ} - \sqrt{3})$   
 $48 = h(2+13^{\circ} - \sqrt{3})$   
 $48 = h(2+13^{\circ} - \sqrt{3})$   
 $51 = h(2+13^{\circ} - \sqrt{3})$   
 $48 = h(2+13^{\circ} - \sqrt{3})$   
 $48 = h(2+13^{\circ} - \sqrt{3})$   
 $48 = h(2+13^{\circ} - \sqrt{3})$   
 $51 = h(2+13^{\circ} - \sqrt{3})$   
 $48 = h(2+13^{\circ} - \sqrt{3})$   
 $49 = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{3} = \frac{1}{3} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{6} = \frac{1}{16} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{6} = \frac{1}{16} \times \frac{1}{16} \times$ 

$$k$$
 ФВ анналазија съ а сенна 20 или 2 страна страна страна страна 20 или 2 страна страна страна 2  
m или 2 страна страна страна 2  
 $a > 4/2 (m^2 - p^2)$   $a > 1/2 (p^2 - m^2)$   $(2 + 4/4 (m^2 - p^2))$   $d > 1/4 (p^2 - m^2)$   
Soln: ипп ВБ.  $Ac = 2z$  ct,  $ac = z$   
 $ctrin. BB = 2y$  ct.  $Bo = y$   
 $\therefore 2H = Crasting constants (2 + 2 + 2)$   
 $\therefore 2H = Crasting constants (2 + 2)$   $(-2 + 1)$   $(-2 + 1)$   
 $g = m = 2(x + y)$   $(-2 + 1)$   $(-2 + 1)$   $(-2 + 1)$   
 $g = m = 2(x + y)$   $(-2 + 1)$   $(-2 + 1)$   $(-2 + 1)$   
 $g = 2(x + y)$   $g = 2(x + y)$   $(-2 + 1)$   $(-2 + 1)$   $(-2 + 1)$   $(-2 + 1)$   $(-2 + 1)$   $(-2 + 1)$   $(-2 + 1)$   $(-2 + 1)$   $(-2 + 1)$   $(-2 + 1)$   $(-2 + 1)$   $(-2 + 1)$   $(-2 + 1)$   $(-2 + 1)$   $(-2 + 1)$   $(-2 + 1)$   $(-2 + 1)$   $(-2 + 1)$   $(-2 + 1)$   $(-2 + 1)$   $(-2 + 1)$   $(-2 + 1)$   $(-2 + 1)$   $(-2 + 1)$   $(-2 + 1)$   $(-2 + 1)$   $(-2 + 1)$   $(-2 + 1)$   $(-2 + 1)$   $(-2 + 1)$   $(-2 + 1)$   $(-2 + 1)$   $(-2 + 1)$   $(-2 + 1)$   $(-2 + 1)$   $(-2 + 1)$   $(-2 + 1)$   $(-2 + 1)$   $(-2 + 1)$   $(-2 + 1)$   $(-2 + 1)$   $(-2 + 1)$   $(-2 + 1)$   $(-2 + 1)$   $(-2 + 1)$   $(-2 + 1)$   $(-2 + 1)$   $(-2 + 1)$   $(-2 + 1)$   $(-2 + 1)$   $(-2 + 1)$   $(-2 + 1)$   $(-2 + 1)$   $(-2 + 1)$   $(-2 + 1)$   $(-2 + 1)$   $(-2 + 1)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$   $(-2 + 2)$ 

\* AD Rayor ABC & ZABC & since 
$$a$$
 since  $a$  if the first of the end of the e

\* ABJEN ABC & abov A as even fightions BC UP Rig D UP Reach  
& 1 ett AB = 4, AC = 3 (PUT ZA = 60° Etat AD as events Reached a)  
a> 2/3 (D> 12/3/4) c> 15/3/4 d> CA3/4  
Solat:  
'Ar. AABC = Ar. AACD + Ar. AABD  
AC = 3, AB = 4  
2CAD = ZBAD = 30°  

$$\therefore \frac{1}{2} \times ACX = ABX \sin 60^{\circ} = \frac{1}{2} \times ACX = ADX \sin 30^{\circ} + \frac{1}{2} \times ABX = ADX \sin 30^{\circ} + \frac{1}{2} \times (3+4)$$
  
9 GV3 = ADX  $\frac{1}{2} \times (3+4)$   
9 CO =  $\frac{1}{2} \times \frac{1}{2} \times \frac{1$ 

\* 21 
$$\widehat{a} \frac{d^{2}bc}{d^{2}+bc} + \frac{b^{2}}{b^{2}+ca} + \frac{c^{2}ab}{c^{2}+ab} = 1 \frac{b^{2}c^{4}}{a^{2}+bc} + \frac{b^{2}}{b^{2}+ca} + \frac{c^{2}}{c^{2}+ab} = 1$$
  
3  $\widehat{a} = 0$   $\widehat{b} = 1$   $\widehat{b} = 2$   $\widehat{a} = 1$   
 $\widehat{a} = 2$   $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   
 $\widehat{a} = 2$   

1

\* 212  $2x = \sqrt{a} + \frac{1}{\sqrt{a}}$ , a>0.  $\frac{1}{\sqrt{x^2 - 1}}$  on simple  $\frac{1}{\sqrt{x^2 - 1}}$ a> a - 1 b> a + 1 c>  $\frac{1}{\sqrt{2}}(a + 1)$  ( $\frac{1}{\sqrt{2}}(a - 1)$ ) Soln:-":  $2\chi = \sqrt{\alpha} + \frac{1}{\sqrt{\alpha}}$   $\frac{\sqrt{\chi^2 - 1}}{\chi - \sqrt{\chi^2 - 1}}$ 1 1 11-10-1-1- 52  $g \chi = \frac{\alpha + 1}{2\sqrt{\alpha}}$  $= \frac{\alpha - 1}{2\sqrt{\alpha}}$  $G_{1} \propto^{2} = \frac{(\alpha+1)^{2}}{4\alpha}$ 21a - 1-1 21a - 21a 9 x2-1: (a+1)2-4a 2.10 G JZ2-1 = /(a-1)2  $4\sqrt{x^2-1} = \frac{a-1}{2\sqrt{a}} = \frac{1}{2}(a-1)$ \* रादि र और 1/2 की औसत A है तो 23 और 1/23 का औसत वया होगा. a> 4A3-A (b) 4A3-34) c> 4A3-2A d> 4A3-4A Soln:-·: १ तथा 1/2 का ऑसत A है  $G \chi^3 + \frac{1}{\chi_3} + 3 \cdot \chi \cdot \frac{1}{\chi} (\chi + \frac{1}{\chi}) = 84^3$ 9 23+ + 3×24 = 843 9 x3+ 13 = 8A3-6A : 23 तथा 1/23 का ऑसत = 8A3-6A = 2(4A3-3A) itels date 1 Appletic 2 1 1 1 ( D. C. ( D. C. ) / . = 4A3-34 A DE CANA

\* एक शंकु की त्रिप्या असके जैंचाई का vz भुणा है। उस शंकु से अधिकतम आयतन वाला धन काटा जाता है। शंकु के आयतन का धन के आयतन से क्या अनुपात है?



2.257:1

| * 212 va+26 + va-26 = v3 Etat a: 6 do HIF del Etal?                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------|
| a> 2:13 b> 13:4 c> 13:2 d> 4:13                                                                                                                 |
|                                                                                                                                                 |
| Soln:- $\sqrt{a+2b} + \sqrt{a-2b} = \sqrt{3}$<br>$\sqrt{a+2b} - \sqrt{a-2b} = \frac{\sqrt{3}}{1}$                                               |
| Componendo dividendo (etarine filouria) coet de                                                                                                 |
| Va+2b But                                                                                                                                       |
| $\frac{\sqrt{a+2b}}{\sqrt{a-2b}} = \frac{\sqrt{3}+1}{\sqrt{3}-1}$                                                                               |
| Square aszinz, au                                                                                                                               |
| Square and up $\frac{a+2b}{a-2b} = \frac{4+2\sqrt{3}}{4-2\sqrt{3}}$                                                                             |
| Q-20 4-213                                                                                                                                      |
| and comp. aliva. over ye                                                                                                                        |
| $\frac{a}{2b} = \frac{4}{2\sqrt{3}}$                                                                                                            |
| 9 a:b= 4:13                                                                                                                                     |
| · · · · · · · · · · · · · · · · · · ·                                                                                                           |
| * शहि व+6 = 4 होतो व:6 वशाहीमा?                                                                                                                 |
| a> 2:1 b> 1:2 c> $(\sqrt{3}+1):(\sqrt{3}-1)$ d> $(2+\sqrt{3}):(2-\sqrt{3})$                                                                     |
| Solor                                                                                                                                           |
| $\frac{a+b}{\sqrt{ab}} = \frac{4}{1}$                                                                                                           |
| $\frac{a+b}{2\sqrt{ab}} = \frac{2}{1}$                                                                                                          |
|                                                                                                                                                 |
| Comp. divd. <u>a+15+21ab</u> <u>2+1</u><br><u>a+b-21ab</u> <u>2-1</u>                                                                           |
|                                                                                                                                                 |
| 9 $(\sqrt{a} + \sqrt{b})^2 = \frac{3}{1}$<br>$(\sqrt{a} - \sqrt{b})^2 = 1$                                                                      |
|                                                                                                                                                 |
| 9 va+vb = v3<br>va-vb = 1                                                                                                                       |
|                                                                                                                                                 |
| Again Comp airo. $\sqrt{a} = \frac{\sqrt{3}+1}{\sqrt{5}}$<br>$\sqrt{5} = \frac{\sqrt{3}+1}{\sqrt{3}-1}$<br>$\frac{\sqrt{2}+\sqrt{3}}{\sqrt{3}}$ |
| $9  \frac{Q}{D} = \frac{4+2\sqrt{3}}{4\cdot 2\sqrt{3}} = \frac{2(2+\sqrt{3})}{2(2+\sqrt{3})} = \frac{2}{2-\sqrt{3}}$                            |
|                                                                                                                                                 |

\* 
$$2if\hat{a} + \frac{1}{4} = -1 \frac{1}{2} e^{if} (1 - a + a^{2}) (1 + a - a^{2}) (3i + 1i + 42i) e^{if} and
a) -1 b) 1 c) -4 e^{if} -4 e^{if} (1 - a + a^{2}) (1 + a - a^{2}) (3i + 1i + 4i) = 0$$
  
Soln:  
 $a^{2} + 1 = -a / -a^{2} = 1 + a - \dots (i)$   
 $9 a^{2} + a + 1 = 0$   
 $9 (a^{-1}) (a^{2} + a + 1) = 0$   
 $9 a^{3} - 1^{3} = 0$   
 $1 + a^{2} - a (1 + a^{-2})^{2}$   
 $(-a - a) (-a^{2} - a^{2})$   
 $= -2a \times - 2a^{2}$   
 $= 4a^{3}$   
 $= 4x1 = 4$   
\*  $2if\hat{a} a + \frac{1}{6} = b + \frac{1}{6} = c + \frac{1}{6} a^{2}b^{2}c^{2} c$  on  $4if$  and  $2ibic^{2} c$  on  $4if$  and  $2ibic^{2} c$  on  $4if$  and  $2ibic^{2} - \frac{1}{6}$   
 $a + \frac{1}{6} = b + \frac{1}{6} b + \frac{1}{6} = c + \frac{1}{6} a^{2} - \frac{1}{6} = a + \frac{1}{6}$   
 $9 \frac{1}{6} - \frac{1}{6} = b - a - 9 \frac{1}{6} - \frac{1}{6} = c - b - 9 \frac{1}{6} - \frac{1}{6} = a - c$   
 $9 c - b - a - 9 a^{2} - \frac{1}{6} = c - b - 9 \frac{1}{6} - \frac{1}{6} = a - c$   
 $9 b^{2} - \frac{1}{6} = b - a - 9 \frac{1}{6} - \frac{1}{6} = c - b - \frac{1}{6} \frac{1}{6} - \frac{1$ 

10-1

\* एक समकोग त्रिभुज के दोनो न्यूनकोण वाले शीर्फों से खींची जई माश्यिकाएँ एक दूसरे को 30° के कोण पर प्रतिन्हीद करती है। यदि उस समकोग त्रिभुज के कुर्ण की खेबाई उज्या है तो त्रिभुज काक्षेत्रफल वर्ज ईकाई में वया होगा?

a) 
$$\sqrt{2}$$
 (b)  $\sqrt{3}$  c)  $\overline{3}$  c)  $\overline{3}$  d)  $9$   
Soln:  
:  $AB^{2} + Bc^{2} = Ac^{2}$   
 $\therefore \sqrt{2} + \chi^{2} = 9$   
 $BD = \chi/2$ .  $BE = Y/2$   
:  $AD = \int AB^{2} + BD^{2} \sqrt{\gamma^{2} + (\frac{\chi}{2})^{2}}$   
 $\Rightarrow \int \frac{4\gamma^{2}+\chi^{2}}{4}$   
 $\Rightarrow \sqrt{3\gamma^{2}+9}$   
 $\Rightarrow \sqrt{3\gamma^{2}+9}$   
 $\therefore FD = AD \times \frac{1}{3} = \sqrt{3\gamma^{2}+9}$  [ce on  $2/3$ ]  
 $CE = \sqrt{3z^{2}+9}$   $\therefore CF = \frac{\sqrt{3}\sqrt{2}+9}{63}$  [ce on  $2/3$ ]  
 $\therefore \frac{4}{5}$  CFD  $\frac{1}{2} \times \sqrt{3\gamma^{2}+9}$  [ce on  $2/3$ ]  
 $\therefore \frac{4}{5}$  CFD  $\frac{1}{2} \times \sqrt{3\gamma^{2}+9}$  [ce on  $2/3$ ]  
 $\therefore \frac{4}{5}$  CFD  $\frac{1}{2} \times \sqrt{3\gamma^{2}+9} \times \frac{1}{5} \times \frac{1}{2} = \frac{\chi}{42}$   
 $\Rightarrow (\sqrt{3\gamma^{2}+9}) (\sqrt{3z^{2}+9}) = 6\pi^{2}$   
 $\Rightarrow (\sqrt{3\gamma^{2}+9}) (\sqrt{3z^{2}+9}) = 6\pi^{2}$   
 $\Rightarrow (\sqrt{3\gamma^{2}+9}) (\sqrt{3z^{2}+9}) = 36z^{2}\gamma^{2}$   $\therefore \Delta ABC ontehraps
 $\Rightarrow (3\gamma^{2}+9) (3z^{2}+9) = 36z^{2}\gamma^{2}$   $\therefore \Delta ABC ontehraps
 $\Rightarrow (3\gamma^{2}+9) (3z^{2}+9) = 36z^{2}\gamma^{2}$   $\Rightarrow (\sqrt{3})^{2}$   
 $\Rightarrow 27 \times 9 + 81 = 36z^{2}\gamma^{2} - 9z^{2}\gamma^{2}$   $\Rightarrow \sqrt{3}$   
 $\Rightarrow 24\pi^{2}\gamma^{2} = 24(9+3)$   $= \sqrt{3}$   
 $\Rightarrow \chi^{2}\gamma^{2} = 12$   
 $\Rightarrow \chi^{4} = 2\sqrt{3}$$$ 



\* 21G coto + coso = p ATT coto - coso = q Et At 
$$(p^{2}-q^{1})^{2} = ?$$
  
(a)  $\pm 6 pq$ . (b)  $8pq$ . (c)  $4pq$ . (d)  $12pq$ .  
Soln:-  
:  $pxq = (coto + coso)(coto - coso)$   
=  $cot^{2}o - cos^{2}o$   
=  $cot^{2}o - cos^{2}o$   
=  $cot^{2}o - cos^{2}o$   
=  $cot^{2}o - cos^{2}o$   
 $= cot^{2}o - cos^{2}o$ .  
(A)  $p^{2}-q^{2} = (coto + coso)^{2} - (coto - coso)^{2}$   
=  $4 coto - coso$   $[-(a+b)^{2}-(a-b)^{2}=4ab]$   
 $\cdot \cdot (p^{2}-q^{2})^{2} = (4 coto - coso)^{2}$   
=  $16 cot^{2}o \cdot cos^{2}o$   
 $\cdot \pm 6pq$ .  
\*  $cos^{2}o + sin^{2}o + cos^{2}o - sin^{2}o = ?$   
 $a > \pm b > -\pm coto - coso - sino$   
 $coso + sino + cos^{2}o - sino = ?$   
 $a > \pm b > -\pm cos^{2}o - sino + coso + coso - sino + coso + co$ 

|             |                      | with a stat 2                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                                       |
|-------------|----------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------------|
| a > 1       | 4-31                 | 15> 3/2                                                            | (c > 9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14)      | d>4/9                                 |
| Soln:-      |                      | हार के प्रश्न में ह<br>नीधूर्वक रखटार                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s'base'  | को बराबर कर                           |
| •           | ç                    | $(x)^{x\sqrt{x}} = ($                                              | And the second sec | 3        |                                       |
|             |                      | 9 2xvz= 32                                                         | K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |                                       |
|             |                      | 9 VZ= 3/2                                                          | Per survey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | 8                                     |
| g x= 9/4    |                      |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 = 1    | - 1 - 9184<br>- 1                     |
| * হাহি ২    | = 2+13 2             | t, at x2-4x+2                                                      | का सान क्या                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ा होगा ? |                                       |
| (a) 1       |                      | 10> 2                                                              | \$3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | d        | >4 .                                  |
|             | ਣੀ ਤਲਸੀਂ<br>ਪਇਰਾਨਿੰਨ | के प्रश्नमें जिस्<br>कोई अतिहित्त प<br>किया जा सके द<br>आसानी होगी | র র্ডাহ ঘ্রহা ক<br>শ সাবংথক ব                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | र रादि उ | हे पूर्ण वर्श में                     |
|             |                      | $\chi^2 - 4\chi$                                                   | +2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | sints                                 |
|             |                      |                                                                    | +2+2-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                                       |
|             |                      | $\Rightarrow \chi^2 - 4\chi - 4\chi$                               | +4-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |                                       |
|             |                      | $\Rightarrow (\chi - 2)^2$                                         | -2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                                       |
|             |                      | ⇒ (2+√3-2                                                          | $(2)^{2}-2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |                                       |
|             |                      | => (~3)2-                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                                       |
|             |                      | ⇒ 3-2                                                              | Red & The second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |                                       |
| <u>i di</u> | Ala-r.V              | > 土                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                                       |
|             | (-) +-               | Million - E                                                        | Contraction<br>Entraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                       |
|             |                      |                                                                    | 71 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |                                       |
| A           | me - William         | and the second second                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | · · · · · · · · · · · · · · · · · · · |

\* रादि x2+a2= y2+b2= ax+by=1 Et, at a2+b2 का मान त्या रोगा? (a) 1) C) 3 12> 2 dy O Soln:-Trick HTT :  $\chi^2 + \alpha^2 = \gamma^2 + b^2 = \alpha \chi + b \gamma = 1$  $9(x^2+\alpha^2) + (y^2+b^2) = 1+1$ G= 32  $9^{x}, (x^{2}+a^{2}) + (y^{2}+b^{2}) = 2(ax+by)$  $3^{x}, (x^{2}+a^{2}) + (y^{2}+b^{2}) = 2(ax+by)$ [:ax+by=1]  $g(x^2+a^2-2ax)+(y^2+b^2-2by)=0$ 9  $(x-a)^2 + (y-b)^2 = 0$ 9 x-a=0, x=a Y-6=0, Y=6 4 ·: Q2+b2: = ++= = + \* रादि २+ 1 = 13 होता २17+ 1 का मान क्या होगा ? a> 1 b > 2  $c > \sqrt{3}$ d>-v3 Soln:- ·: x++= 13 stat, x3++= 0>x6+==0>x6+=-1  $\chi^{17} + \frac{1}{\chi^{17}} = \frac{\chi^{18}}{\chi} + \frac{\chi}{\chi^{18}}$  $= \frac{(\chi^6)^3}{\chi} + \frac{\chi}{(\chi^6)^3}$ = - - - ( 2+ 之) = - 13

\* ਬਿੱਚੇ ਗए ਜਿਸ ਜੋ 2040 ਹਰਂ 2080 का ਦਸੇਗफल जात करें।  

$$2 > 100'$$
 b> 120' c> 150' d> 180'  
Soln:- दिर्च जए निम को चवि अल्या किंਦा जाख  
 $2 > 6 = 2840$  [एकांतर वृत्तकंड के कांज]  
 $2 > 6 = 2840$  [एकांतर वृत्तकंड के कांज]  
 $3 = 4 > 8cb = 3$ .  
 $2 > 6 = 2840$  [एकांतर वृत्तकंड के कांज]  
 $3 = 4 > 8cb = 3$ .  
 $2 > 6 = 2840$  [एकांतर वृत्तकंड के कांज]  
 $3 = 4 > 8cb = 3$ .  
 $2 > 6 = 2840$  [एकांतर वृत्तकंड के कांज]  
 $3 = 4 > 8cb = 3$ .  
 $2 > 6 = 2 > 4$ .  
 $2 > 6 = 32 \times$   
 $9 < x^5 = 32$   
 $9 < x = 2$ .



\* Devivation of formula :-· ~ = ] 1.361 8 9 8 = √(a+b+c)abc (a+b+c). -b-+  $9 \ 8^2 (a+b+c)^2 = (a+b+c)abc$  $ig(a+b+c) = \frac{abc}{\chi^2}$ 15 . 52 801 C (12) \* 212 x= 3 a+ /a2+ b3 + 3 a- /a2+ b3 Etat x3+ 3bx an +11- a21 Etan a> 0 b> a (c> 2a) d> 1 Soln:- $\chi^{3} = \left( \sqrt[3]{a + \sqrt{a^{2} + b^{3}}} + \sqrt[3]{a - \sqrt{a^{2} + b^{3}}} \right)^{3}$  $q \chi^3 = \alpha + \sqrt{\alpha^2 + b^3} + \alpha - \sqrt{\alpha^2 + b^3} + 3 \sqrt[3]{\alpha^2 - (\sqrt{\alpha^2 + b^3})^2} \chi$ 9 x3= 2a+3 3 a2-a2-b3 x  $9x^3 = 2a - 3bx$  $G \chi^3 + 3b\chi = 2a$ \* समांतर चतुर्भुज ABCD में p तथा Q. BC तथा DC के महरा विंदु हो तो DAPQ का क्षेत्रफल कितना रोगा शदि रातुभुजिका क्षेत्रफल २४००२ हो १  $a > 60m^2$  (b)  $9cm^2$  c>  $\pm 0cm^2$ d> 120m2 Soln:- figure:-1 figure :-Ar. D APCO = Ar. CABCD 12cm2 A figure:-2  $\frac{c}{2} Ar \Delta P c Q = \frac{Ar \Box A B c D}{8} = 30m^2$ : ANDAPQ = Ar. DAPCO- Ar. DPCQ = (12-3) = 90m2

\* 
$$\Box G [A_{+} G ] A B C H ZBCA = 60' (PIT A B^2 = BC^2 + CA^2 + x Ct Ct^2 x = ?$$
  
a) (BC)(CA) (B) = (BC)(CA) c) (AB)(BC) d) O  
Soln:  
BO L CA gifter area  
 $x = Coscoi = CD$   
 $y = \frac{1}{2} = \frac{CD}{BC}$   
 $y = CD = \frac{BC}{2}$   
 $y = CD = \frac{BC^2}{2} + \frac{AD^2}{2}$   
 $= BC^2 - cD^2 + (AC - CD)^2$   
 $= BC^2 - cD^2 + AC^2 + CB^2 - 2 - AC \cdot CD$   
 $= BC^2 + AC^2 - x - AC \cdot \frac{BC}{2}$   
 $y = AB^2 = BC^2 + AC^2 - AC \cdot BC$   
 $\therefore x = -(BC) \cdot (AC)$   
\*  $2IG x^2 + x = 5 ct ct (x + 3)^3 + \frac{1}{(x + 3)^3}$  (51 HIFT (Bordent ctain?)  
(a) 110 b) 125 c) 140 d) 225  
Soln:  $(x + 3)^3 + \frac{1}{(x + 3)^3}$   
 $= [(x + 3) + \frac{1}{(x + 3)^3}]^3 - 3(x^2 + (x + 5x + 10))$   
 $= [x^2 + (x + 5x + 10)]^3 - 3[x^2 + (x + 5x + 10)]$   
 $= [\frac{5(x + 15)}{x + 3}]^3 - 3[\frac{5(x + 15)}{x + 3}]$   
 $= [\frac{5(x + 15)}{(x + 3)}]^3 - 3[\frac{5(x + 3)}{x + 3}]$   
 $= 125 - 15 = 110$ 

\* 
$$\overline{u}$$
 (a' Hze a'b' Hze start a a totat 'b' at the form of the start  
a value of the start at the totat at the start and the totat at the start  
a value of the start at the start at the start and the start  
a value of the start at the start at the start and the start  
a value of the start at the start at the start and the start  
a value of the start a case of the start at the start and the start a start a start of the start at the start at

\* ABCD OUT EXTRACT CTG3 for 
$$\xi$$
 (FIELT AB :  $AD = 2:1$   $\xi$  ) ENFINE CTG3 for  
CT COR OTHER OF  $\xi$  ) ENTINE CTG3 for  $\delta$  Coord of Struct and  $\delta$  of  $\xi$  ) ENTINE CTG3 for  $\delta$  ( $\delta$  ) T :  $\delta$  ) T :  $\delta$  ( $\delta$  ) T :  $\delta$  ( $\delta$  ) T :  $\delta$  ) T :  $\delta$  ( $\delta$  ) T :  $\delta$  ( $\delta$  ) T :  $\delta$  ) T :  $\delta$  ( $\delta$  ) T :  $\delta$  ( $\delta$  ) T :  $\delta$  ) T :  $\delta$  ( $\delta$  ) T :  $\delta$  ( $\delta$  ) T :  $\delta$  ) T :  $\delta$  ( $\delta$  ) T :  $\delta$  ) T :  $\delta$  ( $\delta$  ) T :  $\delta$  ) T :  $\delta$  ( $\delta$  ) T :  $\delta$  ) T :  $\delta$  ( $\delta$  ) T :  $\delta$  ) T :  $\delta$  ( $\delta$  ) T :  $\delta$  ) T :  $\delta$  ( $\delta$  ) T :  $\delta$  ) T :  $\delta$  ( $\delta$  ) T :  $\delta$  ) T :  $\delta$  ( $\delta$  ) T :  $\delta$  ) T :  $\delta$  ( $\delta$  ) T :  $\delta$  ) T :  $\delta$  ( $\delta$  ) T :  $\delta$  ) T :  $\delta$  ( $\delta$  ) T :  $\delta$  ) T :  $\delta$  ( $\delta$  ) T :  $\delta$  ) T :  $\delta$  ( $\delta$  ) T :  $\delta$  ) T :  $\delta$  ( $\delta$  ) T :  $\delta$  ) T :  $\delta$  ( $\delta$  ) T :  $\delta$  ) T :  $\delta$  ( $\delta$  ) T :  $\delta$  ) T :  $\delta$  ( $\delta$  ) T :  $\delta$  ) T :  $\delta$  ( $\delta$  ) T :  $\delta$  ) T :  $\delta$  ( $\delta$  ) T :  $\delta$  ) T :  $\delta$  ( $\delta$  ) T :  $\delta$  ) T :  $\delta$  ( $\delta$  ) T :  $\delta$  ) T :  $\delta$  ( $\delta$  ) T :  $\delta$  ) T :  $\delta$  ( $\delta$  ) T :  $\delta$  ) T :  $\delta$  ( $\delta$  ) T :  $\delta$  ) T :  $\delta$  ( $\delta$  ) T :  $\delta$  ) T :  $\delta$  ( $\delta$  ) T :  $\delta$  ) T :  $\delta$  ( $\delta$  ) T :  $\delta$  ) T :  $\delta$  ( $\delta$  ) T :  $\delta$  ) T :  $\delta$  ( $\delta$  ) T :  $\delta$  ) T :  $\delta$  ( $\delta$  ) T :  $\delta$  ) T :  $\delta$  ( $\delta$  ) T :  $\delta$  ) T :  $\delta$  ( $\delta$  ) T :  $\delta$  ) T :  $\delta$  ( $\delta$  ) T :  $\delta$  ) T :  $\delta$  ( $\delta$  ) T :  $\delta$  ) T :  $\delta$  ( $\delta$  ) T :  $\delta$  ) T :  $\delta$  ( $\delta$  ) T :  $\delta$  ) T :  $\delta$  ( $\delta$  ) T :  $\delta$  ) T :  $\delta$  ( $\delta$  ) T :  $\delta$  ) T :  $\delta$  ( $\delta$  ) T :  $\delta$  ) T :  $\delta$  ( $\delta$  ) T :  $\delta$  ) T :  $\delta$  ) T :  $\delta$  ) T :  $\delta$  ( $\delta$  ) T :  $\delta$  ) T :

\* Desivation of formula:- $\Delta ADE \vec{H},$   $Sinco = \frac{DE}{AD}$   $A = \frac{1}{2}$   $9 \quad \sqrt{3} = DE$ DELAB तथा CFLAB खींचा जाया d. K  $9 \frac{\sqrt{3}}{2} = \frac{DE}{D}$   $9 DE = \frac{D\sqrt{3}}{2}$  $\therefore AE = \sqrt{AD^2 - DE^2} = \sqrt{D^2 - 3D^2} = \frac{D}{2}$  $BE = AB - AE = a - \frac{b}{2} = \frac{2a - b}{2}$  $\begin{array}{cccc} (121) \quad AF = & AB + BF = & a + \frac{b}{2} = & \frac{2a + b}{2} \\ \hline \end{array}$  $\frac{Ac^{2}}{BD^{2}} = \frac{AF^{2} + Fc^{2}}{BE^{2} + DE^{2}} = \frac{\left(\frac{2a+b}{2}\right)^{2} + \left(\frac{b\sqrt{3}}{2}\right)^{2}}{\left(\frac{2a-b}{2}\right)^{2} + \left(\frac{b\sqrt{3}}{2}\right)^{2}}$  $9 \frac{AC^2}{BD^2} = \frac{4a^2 + b^2 + 4ab + 3b^2}{4a^2 + b^2 - 4ab + 3b^2}$  $\frac{9}{BD^2} = \frac{4(a^2+b^2+ab)}{4(a^2+b^2-ab)}$  $9 AC = \int \frac{a^2+b^2+ab}{a^2+b^2-ab}$ \* शहि 2= Ja3/bJa3b --- ~ होता 2 का मान वशा होगा? b>. Ja3b c> 4/a3b d> 5/a3b a> 3/23 b Soln:- .: x = Ja3/6/a3/6- x 9 x2= a. 3/b. a. b. a. 9 (x2)3= a3. b.x 9 x = a3bx

Generated by CamScanner from intsig.com

9 x = Ja3b