Practice Paper 6

Paper-I

Part-1 (physics)

Section-I

Straight Objective Type

Q1

Two identical isosceles prisms of small prism angle A and refractive index μ are placed with their bases touching each other. This system can act as a crude converging lens. Assuming a ray of light is incident on a prism at a height h from its base the focal length of this system is
a. $\frac{\mathrm{A}}{\mathrm{h}(\mu-1)}$

$\mathrm{b} \frac{(\mu-1)}{\mathrm{hA}}$
c. $\frac{\mathrm{A}}{(\mu-1) \mathrm{h}^{2}}$
d. $\frac{\mathrm{h}}{(\mu-1) \mathrm{A}}$

Q2

The wavelength of $\mathrm{K}_{\alpha} \mathrm{X}$-ray produced by a X-ray tube is $0.76 \AA \AA$. The atomic number of the anode material of the tube is
a. 38
b. 40
c. 43
d. 47

Q3

A thunder cloud and the earth's surface may be regarded as a pair of charged parallel plates separated by a distance h as shown. The capacitance of the system is C. When a lighting flash of mean current I and time duration t occurs the electric field strength between cloud and earth is reduced by
a. $\frac{i t}{\mathrm{C}}$

b. Cit
c. $\frac{\mathrm{Cit}}{\mathrm{h}}$
d. $\frac{\text { it }}{\mathrm{Ch}}$

Q4
A conducting wire bent in the form of a parabola $\mathrm{y}^{2}=2 \mathrm{x}$ carries a current $\mathrm{i}=2 \mathrm{~A}$ as shown. The wire is placed in a uniform magnetic field $\vec{B}=-4 \widehat{\mathrm{k}}$ tesla. The magnetic force on the wire (in newton) is
a. $-16 \hat{1}$
b. 32î

c. $-32 \hat{\imath}$
d. $16 \hat{1}$

Q5
A plane spiral with large N number of turns wound tightly to one another is located in a uniform magnetic field perpendicular to the plane of spiral. The outside radius of the spiral's turn is equal to a. magnetic field varies with time as $B=B_{0} \sin \omega t$, where B_{0} and ω are constants. The amplitude of induced emf in the spiral is

a. $4 \pi \mathrm{Na}^{2} \mathrm{~B}_{0} \omega$
b. $7 \pi \mathrm{Na}^{2} \mathrm{~B}_{0} 2 \omega$
c. $\frac{1}{3} \pi \mathrm{Na}^{2} \mathrm{~B}_{0} \omega$
d. $\frac{1}{3} \mu_{0} \pi N^{2} a_{0} \omega$

Q6

Two particle 1 and 2 move with constant velocities V_{1} and V_{2}. At initial moment their radius vectors are equal r_{1} and r_{2}. How must these four vectors be related for the particles to collide?
a. $\frac{\vec{r}_{1}-\vec{r}_{2}}{\left|\vec{r}_{1}-\vec{r}_{2}\right|}=\frac{\overrightarrow{\mathrm{v}}_{1}-\overrightarrow{\mathrm{v}}_{2}}{\left|\overrightarrow{\mathrm{v}}_{1}-\overrightarrow{\mathrm{v}}_{2}\right|}$
b. $\frac{\vec{r}_{1}+\vec{r}_{2}}{\left|\vec{r}_{1}-\vec{r}_{2}\right|}=\frac{\overrightarrow{\mathrm{V}}_{1}-\overrightarrow{\mathrm{v}}_{2}}{\left|\overrightarrow{\mathrm{v}}_{1}+\overrightarrow{\mathrm{v}}_{2}\right|}$
c. $\frac{\vec{r}_{1}-\vec{r}_{2}}{\left|\vec{r}_{1}+\vec{r}_{2}\right|}=\frac{\vec{v}_{1}-\vec{v}_{2}}{\left|\vec{v}_{1}+\vec{v}_{2}\right|}$
d. $\frac{\vec{r}_{1}-\vec{r}_{2}}{\left|\vec{r}_{1}+\vec{r}_{2}\right|}=\frac{\overrightarrow{\mathrm{v}}_{1}+\overrightarrow{\mathrm{v}}_{2}}{\left|\overrightarrow{\mathrm{v}}_{1}-\overrightarrow{\mathrm{v}}_{2}\right|}$

07

A point moves along the arc of a circle of radius R. Its velocity varies as $v=a \sqrt{s}$ where a is constant.
The angle \propto between the vector of total acceleration and the vector of velocity is given by
a. $\tan ^{-1}\left(\frac{R}{s}\right)$
b. $\tan ^{-1}\left(\frac{\mathrm{R}}{2 \mathrm{~s}}\right)$
c. $\tan ^{-1}\left(\frac{2 \mathrm{~s}}{\mathrm{R}}\right)$
d. $\tan ^{-1}\left(\frac{s}{R}\right)$

Q8
A body floats In a liquid contained in a beaker. If the whole system as shown in figure falls freely under gravity then the up thrust on the body due to liquid is
a. zero
b. equal to the weight of liquid displaced.
c. equal to the weight of the body in air.
d. equal to the weight of the immersed portion of the body.

Q9

A plate of mass M remains in equilibrium in air when n bullets are fired per second on it. The mass of each bullet is m and it strikes the plate with speed v. if the coefficient of restitution is e, then ($M \gg m$)
a. $M=\frac{\mathrm{nm}(\mathrm{e}+\mathrm{e}) \cdot \mathrm{v}}{\mathrm{g}}$
b. $M=\frac{\mathrm{nmv}}{\mathrm{g}}$
c. $\mathrm{M}=\frac{2 \mathrm{~nm}\left(\mathrm{e}+\mathrm{e}^{2}\right)}{\mathrm{g}}$
c. $\mathrm{M}=2 \mathrm{nmg}$

Section-II

$\underline{010}$

Statement-1:

A body of mass m_{1} collides head on elastically with another stationary body of mass m_{2}. After the collision, velocity of mass m_{2} is maximum, when $\mathrm{m}_{1} \ll \mathrm{~m}_{2}$.

Statement-2:

Velocity of second body is always maximum, when its mass m_{2} is greater than mass of the hitting body.
a. Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1
b. Statement-1 is True, Statement-2 is True; Statement-2 is not a correct explanation for Statement-1
c. Statement- 1 is True, Statement-2 is False
d. Statement-1 is True, Statement- 2 is True

$\mathbf{Q 1 1}$

Statement-1:

A uniform solid cylinder rolling with angular velocity ω along a plane surface strikes a vertical rigid wall. Angular velocity of cylinder when it begins to roll up a wall is less than the initial Angular velocity (ω) because

Statement-2:

After striking the vertical wall angular velocity increases.
a. Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1
b. Statement-1 is True, Statement-2 is True; Statement-2 is not a correct explanation for Statement-1
c. Statement-1 is True, Statement-2 is False
d. Statement- 1 is True, Statement- 2 is True

$\underline{\mathbf{Q 1 2}}$

Statement-1:

A current carrying conductor of any arbitrary shape in uniform magnetic field experiences a force given by $\overrightarrow{\mathrm{F}}=\mathrm{i}\left(\overrightarrow{\mathrm{l}^{\prime}} \times \overrightarrow{\mathrm{B}}\right)$ where l^{\prime} is the length vector joining initial to final points. because

Statement-1:

Force on a current carrying conductor is given by $\mathrm{F}=\mathrm{i}\left(\int \overrightarrow{\mathrm{d}}\right) \times \overrightarrow{\mathrm{B}}$ when for a conductor $\int \overrightarrow{\mathrm{d}}$ represents vector sum of all the length elements from initial to final points.
a. Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1
b. Statement-1 is True, Statement-2 is True; Statement-2 is not a correct explanation for Statement-1
c. Statement-1 is True, Statement-2 is False
d. Statement- 1 is True, Statement- 2 is True

Q13

Statement-1:

Ionization energy of atomic hydrogen is greater than atomic deuterium. because

Statement-2:

a. Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1
b. Statement-1 is True, Statement-2 is True; Statement-2 is not a correct explanation for Statement-1
c. Statement-1 is True, Statement-2 is False
d. Statement- 1 is True, Statement- 2 is True

Section-III

Linked Comprehension Type

$M_{14-16:}$ Paragraph for Question Nos. 14 to 16

Q14

Number of photoelectrons released per second is :
a. $\frac{\mathrm{PR}^{2}}{\mathrm{E}}$
b. $\frac{\mathrm{P}}{\mathrm{R}}$
c. $\frac{\mathrm{PR}^{2}}{\mathrm{r}^{2}}$
d. $\frac{\mathrm{Pr}^{2}}{\mathrm{R}^{2}}$

Q15

The wavelength of incident photon is :
a. $\frac{\mathrm{hc}}{\mathrm{NE}}$
b. $\frac{\mathrm{hc}}{\mathrm{E}}$
c. $\frac{\mathrm{Nhc}}{\mathrm{E}}$
d. None of these

Q16

The electric potential of the sphere:
a. remains unchanged
b. increases
c. decreases
d. cannot be found

M_{17-19} : Paragraph for Question Nos. 17 to 19

Vectors are those which have both magnitude and direction and also satisfy the law of vector addition. Unit vectors $\hat{\mathrm{i}}, \mathrm{\jmath}$ and $\hat{\mathrm{k}}$ point along x, y and z - directions. It is very essential to subtract or add vectorially while dealing with vector quantities. The resultant vector may be in the plane of the ground or in perpendicular plane. Use of the directions of poles is a common practice.

$\mathbf{Q 1 7}$

A man walks 30 m north, 20 m East and $30 \sqrt{2}$ South west. The displacement is
a. $80 \sqrt{2} \mathrm{~m}$ North West
b. 10 m West
c. 10 m East
d. zero

018

A man rotates a frame 45° and then 30° clockwise. He repeats them in reverse. The angular displacement involved is/are
a. vectors
b. scalars
c. tensor
d. axial vectors.

$\mathbf{Q 1 9}$

A stone to a string of length ${ }^{\prime}$ ' is whirled in vertical circle. If its speed at the lower-most position is u , the magnitude of the change in velocity as it reaches the horizontal position is
a. $\sqrt{\mathrm{u}^{2}-2 \mathrm{gl}}$
b. $\sqrt{2 \mathrm{gl}}$
c. $\sqrt{\mathrm{u}^{2}-\mathrm{gl}}$
d. $\sqrt{2\left(\mathrm{u}^{2}-\mathrm{gl}\right)}$

Section-IV

Matrix-Match Type

If the correct matches are $\mathrm{A}-\mathrm{P}, \mathrm{A}-\mathrm{S}, \mathrm{B}-\mathrm{Q}, \mathrm{B}-\mathrm{R}, \mathrm{C}-\mathrm{P}, \mathrm{C}-\mathrm{Q}$ and $\mathrm{D}-\mathrm{S}$ then the correctly 4 x 4 matrix should be as given

Q20

Considering a projectile motion

Column I

a. Change in magnitude momentum.
b. Maximum angular momentum about the point of projection.
c. Minimum velocity.
d. Magnitude of change in momentum.

Column II

p. At highest point of the parabolic path.
q. $2 \mathrm{mv} \sin \theta$ between the point of projection and target.
r. $L=\frac{m v^{3} \sin ^{2} \theta \cos \theta}{2 g}$
s. Present along vertical direction

$\mathbf{0 2 1}$

Circuit shown is a part of complicated circuit. The potential difference between A and B is -1 volt.

Column I

a. Current iin the circuit
b. Current through 1Ω resistor
c. Potential difference between A and D
d. Potential difference between Cand D

Column II

p. 4 A
q. 3 A
r. 12 V
s. 24 V

$\mathbf{0 2 2}$

Match the following :

Column I

a. Range and least count of ammeter
b. Least count and sensitivity of ammeter
c. Range and accuracy of ammeter
d. Range and multiplication factor of a voltmeter

Part-II (Chemistry)

Section-I

Straight Objective Type

Q23

The pH of a buffer solution of $0.1 \mathrm{M} \mathrm{HCOONH}_{4}\left[\mathrm{pK}_{\mathrm{b}}=5, \mathrm{pK}_{\mathrm{a}}=4\right]$ is equal to
a. 6.5
b. 7.0
c. 7.5
d. 8.0

$\mathbf{0 2 4}$

The room where you live is spread with a radioactive element.
Its half-life is 60 days. Its activity is 100 times the permissible value.
After how many days will it be advisable to enter the room?
a. 10 days
b. 398 days
c. 600 days d. 39.8 days

$\mathbf{0 2 5}$

The average oxidation number of ' C^{\prime} in $\mathrm{C}_{3} \mathrm{O}_{2}$ and $\mathrm{Mg}_{2} \mathrm{C}_{3}$ are \qquad .respectively.
a. $-\frac{4}{3},+\frac{4}{3}$
b. $+\frac{4}{3},-\frac{4}{3}$
c. 4,4
d. $+\frac{2}{3},-\frac{2}{3}$

026

Which of the following is the most stable?
a. But-1-ene
b. But-2-ene
c. Pent-1-ene
d. Ethane

$\underline{\mathbf{Q 2 7}}$

An engine absorbs heat of 5000 kcal from source at $127^{\circ} \mathrm{C}$. The efficiency of the engine when it is connected to a sink at $27^{\circ} \mathrm{C}$ will be
a. 0.75
b. 0.25
c. 0.85
d. 0.15

Q28

The time required for 99% of Ist order reaction to complete is 100 min . How much time will it take to 99% completion?
a. 100 min
b. 200 min
c. 300 min
d. 400 min

$\mathbf{Q 2 9}$

Which of the following will produce H_{2} ?
(i). $\mathrm{Fe}+\mathrm{H}_{2} \mathrm{SO}_{4}$ (dil) \rightarrow
(ii). $\mathrm{Mg}+\mathrm{HN})_{3}(5 \%) \rightarrow$
(iii). $\mathrm{Sn}+\mathrm{HCI}(\mathrm{dil}) \rightarrow$
(iv). $\mathrm{Cu}+\mathrm{H}_{2} \mathrm{SO}_{4}$ (conc.) \rightarrow
a. (i) and (iv)
b. (i), (ii) and (iv)
c. (i), (ii), (iii) and (iv)
d. (i), (ii) and (iii)

$\mathbf{Q 3 0}$

The gold numbers of $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S are $0.04,0.002,10$ and 25 respectively. The protecting powers of P , Q, R and S are in the order
a. $\mathrm{P}>\mathrm{Q}>\mathrm{R}>\mathrm{S}$
b. $\mathrm{Q}>\mathrm{P}>\mathrm{R}>\mathrm{S}$
c. $\mathrm{Q}>\mathrm{S}>\mathrm{R}>\mathrm{P}$
d. $\mathrm{S}>\mathrm{R}>\mathrm{Q}>\mathrm{P}$

Q31

The product of I^{-}with O_{4}^{-}in alkaline medium is
a. I_{2}
b. $\mathrm{IO}_{3}{ }^{-}$
c. IO^{-}
d. $\mathrm{IO}_{4}{ }^{-}$

Section-II

Assertion-Reason Type

O32

Statement-1:

The energy of an electron is mainly determined by the value of principle quantum number. Because

Statement-2:

The principle quantum number ' n ' is measure of the most probable distance of finding the electron around the nucleus.
a. Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1
b. Statement-1 is True, Statement- 2 is True; Statement- 2 is not a correct explanation for Statement-1
c. Statement-1 is True, Statement-2 is False
d. Statement-1 is True, Statement- 2 is True

$\underline{\mathbf{0 3 3}}$

Statement-1:

At isoelectric point of an amino acid, the solubility of amino acid becomes minimum. because

Statement-2:

It is because +ve and -ve charge on Zwitter ion is equal at isoelectric point.
a. Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1
b. Statement-1 is True, Statement-2 is True; Statement-2 is not a correct explanation for Statement-1
c. Statement- 1 is True, Statement-2 is False
d. Statement-1 is True, Statement-2 is True

Q34

Statement-1:

Phenoxide ion is stronger base as compared to ethoxide ion.
because

Statement-2:

Phenol is stronger acid in comparison to ethanol.
a. Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1
b. Statement-1 is True, Statement-2 is True; Statement-2 is not a correct explanation for Statement-1
c. Statement-1 is True, Statement-2 is False
d. Statement-1 is True, Statement-2 is True

035

Statement-1:

Most of the endothermic reactions are not spontaneous at room temperature but become spontaneous at higher temperature.

Because.

Statement-2:

Entropy of system increase with increase in temperature and $T \Delta S$ becomes greater than ΔH.
a. Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1
b. Statement-1 is True, Statement-2 is True; Statement-2 is not a correct explanation for Statement-1
c. Statement-1 is True, Statement-2 is False
d. Statement-1 is True, Statement-2 is True

Section-III

Linked Comprehension Type

C $_{36-38}$: Paragraph for Question Nos. 36 to 38
Compound ' A ' of molecular formula $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{O}_{2} \mathrm{CI}$ exists in keto form and predominantly in enolic form ' B '. On oxidation with KMnO_{4} ' A ' gives m - chlorobenzoic acid.

Q36

The structure ' A ' in keto form is
(a)

(b)

(c)

(d)

$\mathbf{0 3 7}$

The structure of enol form of ' A ' is
(a)

(L)

(c)

(d)

Q38

Out of ' A ' and ' B ' which will give violet color with FeCl_{3} ?
a. Both ' A ' and ' B '
b. Only 'B'
c. Only 'A'
d. Neither 'A' nor `B'

C_{39-41} : Paragraph for Question Nos. 39 to 41

Hydrogen is the most abundant element in the universe because it is present in the Sun and the stars. It has 7 isotopes discovered so far: ${ }_{1}^{1} \mathrm{H},{ }_{1}^{2} \mathrm{H},{ }_{1}^{3} \mathrm{H},{ }_{1}^{4} \mathrm{H},{ }_{1}^{5} \mathrm{H},{ }_{1}^{6} \mathrm{H},{ }_{1}^{7} \mathrm{H}$. The half-life of ${ }_{1}^{4} \mathrm{H},{ }_{1}^{5} \mathrm{H},{ }_{1}^{6} \mathrm{H}$ are 9.93×10^{-23}, $8.01 \times 10^{-23}, 3.26 \times 10^{-22}$ second respectively. In 2003, hydrogen -7 was produced at the Riken lab in Japan By colliding a high energy beam of $\mathrm{He}-8$ atoms with cryogenic hydrogen target and detecting tritons, the Nuclei of tritium atom and neutrons from break up of hydrogen -7 , the same method is used to produce Hydrogen -5 . It can be liquefied at low temperature. It can be solidified at $-196^{\circ} \mathrm{C}$ and 2.5 million atm Pressure to a black metal like solid. It is the lightest gas. Due to its controversial position in periodic table, It is known as rogue element. Ortho hydrogen and para hydrogen are allotropes of hydrogen.

$\mathbf{0 3 9}$

The half-life of ${ }_{1}^{3} \mathrm{H}$ is
a. 12.32 years
b. 12.32 month
c. 12.32 min
d. 12.32 s .

$\underline{\mathbf{Q 4 0}}$

$2 \mathrm{Na}+\mathrm{H}_{2} \xrightarrow{\text { heat }} 2 \mathrm{NaH}$ (sodium hydride) In the above reaction, H_{2} acts as
a. Oxidising agent
b. Reducing agent
c. Both (a) and (b)
d. None of these

Q41

Which of the following isotope of hydrogen is radioactive ?
a. ${ }_{1}^{1} \mathrm{H}$
b. ${ }_{1}^{2} \mathrm{H}$
c. ${ }_{1}^{3} \mathrm{H}$
d. None of these.

Section-IV

Matrix-Match Type

If the correct matches are $\mathrm{A}-\mathrm{P}, \mathrm{A}-\mathrm{S}, \mathrm{B}-\mathrm{Q}, \mathrm{B}-\mathrm{R}, \mathrm{C}-\mathrm{p}<\mathrm{C}-\mathrm{q}$ and $\mathrm{D}-\mathrm{S}$, then the correctly bubbled matrix should be as follows:

$\mathbf{0 4 2}$

Column I

a. Fusion mixture
b. Diborane
c. Nitric oxide
d. Producer gas

$\underline{\mathbf{0 4 3}}$

Column I

a. $\mathrm{Ni}^{2+}+$ DMG \rightarrow (dimethy 1 glyoxime)
b. $\mathrm{Co}^{2+}+\left(\mathrm{NH}_{4}\right) \mathrm{SCN} \xrightarrow{\text { Acetone }}$
c. $\mathrm{Ba}^{2+} \mathrm{CrO}_{4} 2-\rightarrow$
d. $\mathrm{Ca}^{2+}+\mathrm{C}_{2} \mathrm{C}_{4} 2 \rightarrow$

$\underline{\mathbf{O 4 4}}$

Column I

a. Baeyer's reagent
b. Ammoniacal curpous chloride
c. Aqueous $\mathrm{KOH}+$ dil. $\mathrm{HNO}_{3}+\mathrm{AgNO}_{3}$
d. Aqueous $\mathrm{KHO}+2,4-\mathrm{DNP}$

Column II

p. $\mathrm{CO}+\mathrm{N}_{2}$
q. $\mathrm{K}_{2} \mathrm{CO}_{3}+\mathrm{Na}_{2} \mathrm{CO}_{3}$
r. reducing agent
s. Colorless, paramagnetic

Column II

p. White ppt.
q. Scarlet red ppt.
r. Blue coloration
s. Yellow ppt.

Column II

p. Ethylidene chloride and ethylene chloride
q. Benzyl chloride and benzyl bromide
r. But-1-yne and but-2-yne
s. Benzene and cyclohexene

Part-III (Mathematics)

Section-I

Straight Objective Type

$\underline{045}$

If $f(x)=\log \left(\frac{1+x}{1-x}\right)$ then $f(x)+f(y)$ is
a. $f(x+y)$
b. $f\left(\frac{x+y}{1+x y}\right)$
c. $(x+y) f\left(\frac{1}{1+x y}\right)$
d. $\mathrm{f}(\mathrm{x})+\frac{\mathrm{f}(\mathrm{y})}{1+\mathrm{xy}}$

$\underline{\mathbf{O 4 6}}$

The smallest positive solution of the equation $(81)^{\sin ^{2} x}+(81)^{\cos ^{2} x}=30$ is
a. $\frac{\pi}{12}$
b. $\frac{\pi}{6}$
c. $\frac{\pi}{3}$
d. None of these

$\mathbf{0 4 7}$

Let length of the common chord of two circles of radii 15 cm and 20 cm , whose centres are 25 cm apart, is (in cm)
a. 16
b. 24
c. 15
d. 20

$\underline{\mathbf{Q 4 8}}$

Let A be the fixed point $(0,4)$. And B be a moving point $(2 t, 0)$. Let M be the mid-point of $A B$ and let the perpendicular bisector of $A B$ meet the y-axis at R. The locus of the mid-point P of $M R$ is
a. $y+x^{2}=2$
b. $x^{2}+(y-2)^{2}=1 / 4$
c. $(y-2)^{2}-x^{2}=1 / 4$
d. None of these

049

The number of tangents that can be drawn from the point $(2,3)$ to the parabola $y^{2}=8 x$ is
a. 1
b. 2
c. 0
d. 3

Q50

If the two tangents drawn from a point P to the parabola $\mathrm{y}^{2}=4 \mathrm{x}$ are at right angles, then the locus of P is
a. $x-1=0$
b. $2 x+1=0$
c. $x+1=0$
d. $2 x-1=0$

Q51

The maximum distance between two points of the unit cube is
a. $\sqrt{2}+1$
b. $\sqrt{2}$
c. $\sqrt{3}$
d. $\sqrt{2}+\sqrt{3}$

Q52

A variable plane passes through a fixed point (a, b, c) and cuts the co-ordinate axes at P, Q, R. Then the co-ordinates $(\mathrm{x}, \mathrm{y}, \mathrm{z})$ or the centre of the sphere passing through $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and the origin satisfy the equation
a. $\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=2$
b. $\frac{x}{y}+\frac{y}{b}+\frac{z}{c}=3$
c. $a x+b y+c z=1$
d. $a x+b y+c z=a^{2}+b^{2}+c^{2}$

053
If $f(x)=\frac{1-x}{1+x}$ then $f(f(\cos x))$ equal
a. x
b. $\cos \mathrm{x}$
c. $\tan ^{2}(\mathrm{x} / 2)$
d. None of these

Section-II

Assertion-Reason Type

Q54

Statement-1:

Let P_{n} be the probability that 2 balls drawn from a bag containing n white and n black balls will be of the same color. Then $\lim _{n \rightarrow \infty} p_{n}=\frac{1}{2}$ because

Statement-2:

$\mathrm{p}_{\mathrm{n}}=\frac{\mathrm{n}+1}{2 \mathrm{n}+1}$
a. Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1
b. Statement-1 is True, Statement-2 is True; Statement-2 is not a correct explanation for Statement-1
c. Statement-1 is True, Statement-2 is False
d. Statement- 1 is True, Statement- 2 is True

Q55

Statement-1:

If $I_{n}=\int_{0}^{\frac{\pi}{2}} \log \cos x \cdot \cos 2 n x d x I_{n}=-\frac{n-1}{n} I_{n-1}$
because

Statement-2

$\mathrm{I}_{\mathrm{n}}=\frac{1}{2 \mathrm{n}} \int_{0}^{\pi / 2} \tan \mathrm{x} \sin 2 \mathrm{n} \mathrm{x}$.
a. Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1
b. Statement-1 is True, Statement-2 is True; Statement-2 is not a correct explanation for Statement-1
c. Statement-1 is True, Statement-2 is False
d. Statement-1 is False, Statement-2 is True

Q 56.

Statement-1

In a triangle $A B C, A-B=120^{\circ}$. $R=8 r$ then $\cos c=\frac{7}{8}$ because

Statement-2

If a triangle $R=8 r$ and $A-B=120^{\circ}$, then $\sin \frac{c}{2}=\frac{1}{4}$.
a. Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1
b. Statement-1 is True, Statement-2 is True; Statement-2 is not a correct explanation for Statement-1
c. Statement-1 is True, Statement-2 is False
d. Statement-1 is False, Statement-2 is True

Q 57.
Statement-1: $\lim _{x \rightarrow \infty} \frac{x+\log \sqrt{1+x^{2}}}{x^{2}}=\frac{1}{6}$. Because
Statement-2: $\lim _{\mathrm{x} \rightarrow \infty} \frac{1-\frac{1}{\sqrt{1+\mathrm{x}^{2}}}}{3 \mathrm{x}^{2}}=\frac{1}{6}$
a. Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1
b. Statement-1 is True, Statement-2 is True; Statement-2 is not a correct explanation for Statement-1
c. Statement-1 is True, Statement-2 is False
d. Statement-1 is False, Statement-2 is True

Section-III

Linked Comprehension Type

M_{58-60} : Paragraph for Question Nos. 58 to 60

The graph of a function $f(x)$ in the first quadrant is said to be convex if $f^{\prime \prime}(x)>0$. We can also say that in such a graph chord is above the curve. A graph which is not convex is said to be concave. Answer the following questions:

Q 58.

Let $\mathrm{x}_{1}, \mathrm{x}_{2}$ be the abscissae of two points in the first quadrant which lie on the graph of a convex function $\mathrm{f}(\mathrm{xz})$ then
a. $f\left(\frac{\mathrm{x}_{1}+\mathrm{x}_{2}}{2}\right) \leq \frac{\mathrm{f}\left(\mathrm{x}_{1}\right)+\mathrm{f}\left(\mathrm{x}_{2}\right)}{2}$
b. $f\left(\frac{x_{1}+x_{2}}{2}\right) \geq \frac{\mathrm{f}\left(\mathrm{x}_{1}\right)+\mathrm{f}\left(\mathrm{x}_{2}\right)}{2}$
c. $f\left(\frac{x_{1}+x_{2}}{2}\right)=0$ for all x_{1}, x_{2}
d. None of these

O 59.

Which of the following function's graph is convex in the first quadrant
a. $\log x$
b. $\sin x$
c. x^{3}
d. None of these

Q 60.
In the first quadrant, the graph of the function $y=x^{2} \log x$
a. is convex only
b. is concave only
c. can be both convex and concave
d. None of these

M_{61-63} : Paragraph for Question Nos. 61 to 63

An inequality $f(a, b, c) \geq g(a, b, c)$ is said to be a superior inequality as compared of $f(a, b, c) \geq h(a, b$,
c) if $g(a, b, c)>h(a, b, c)$. Further an inequality $f(a, b, c) \geq g(a, b, c)$ is said to be a better result as
compared to $\mathrm{f}(\mathrm{a}, \mathrm{b}, \mathrm{c}) \geq \mathrm{h}(\mathrm{a}, \mathrm{b}, \mathrm{c})$ if whenever former is true, the later is essentially true. The functions
$f(a, b, c), g(a, b, c), h(a, b, c)$ may also contain two or one variable. Answer the following questions:

Q61.

For $0<x<\frac{\pi}{2}, \sin x=\tan x . \cos x$

$$
\begin{gathered}
\quad=\tan x\left(1-2 \sin ^{2} \frac{x}{2}\right)>x\left(1-2 \cdot \frac{x^{2}}{4}\right) \\
\left(\because \tan x>x, \sin \frac{x}{2}<\frac{x}{2},-2 \sin ^{2} \frac{x}{2}>-2 \frac{x^{2}}{4}\right)
\end{gathered}
$$

Thus $\sin x>x-\frac{x^{3}}{2}$.
Which if the following is a superior inequality than $\sin x>x \frac{x^{2}}{2}$?
a. $\sin x>x+\frac{x^{2}}{2}$
b. $\sin x>x-\frac{x^{3}}{8}$
c. $\sin x>x-\frac{x^{3}}{4}$
d. None of these

Q 62.

Which of the following is a superior inequality than $\sin x>x-\frac{x^{2}}{4}\left(0<x<\frac{\pi}{2}\right)$?
a. $\sin x>x+\frac{x^{2}}{4}$
b. $\sin x>x-\frac{x^{3}}{6}$
c. $\sin x<x$
d. None of these

Q 63.

Consider a true statement, if $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are sides of a triangle then $\mathrm{abc} \geq(\mathrm{a}+\mathrm{b}-\mathrm{c})(\mathrm{b}+\mathrm{c}-\mathrm{a})$. Which of the following is a better(true) result than this?
a. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are real numbers there then. $\mathrm{abc} \geq(\mathrm{a}+\mathrm{b}-\mathrm{c})(\mathrm{b}+\mathrm{c}-\mathrm{a})(\mathrm{c}+\mathrm{a}-\mathrm{b})$
b. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are positive then $\mathrm{abc} \geq(\mathrm{a}+\mathrm{b}-\mathrm{c})(\mathrm{b}+\mathrm{c}-\mathrm{a})(\mathrm{c}+\mathrm{a}-\mathrm{b})$
c. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are negative numbers then $\mathrm{abc} \geq(\mathrm{a}+\mathrm{b}-\mathrm{c})(\mathrm{b}+\mathrm{c}-\mathrm{a})(\mathrm{c}+\mathrm{a}-\mathrm{b})$
d. None of these

Section-IV

Matrix-Match Type

If the correct matches are $\mathrm{A}-\mathrm{P}, \mathrm{A}-\mathrm{S}, \mathrm{B}-\mathrm{Q}, \mathrm{B}-\mathrm{R}, \mathrm{C}-\mathrm{P}, \mathrm{C}-\mathrm{Q}, \mathrm{D}-\mathrm{S}$ and $\mathrm{C}-\mathrm{T}$, then the correctly bubbled 5×5 matrix should be as follow

Q 64.

Match the following events with their probabilities when 4 balls are drawn from bag containing $4 n$ balls of four different color. (Balls of same color are identical and number of balls of each color is $n, n \geq 4$).
a. Balls drawn are of same color
b. Balls drawn are of different colors
c. Balls drawn are of two colors
d. Balls drawn are of three colors
p. $\frac{3 n^{3}}{(2 n-1)(4 n-1)(4 n-3)}$
b. Balls drawn are of differt
q. $\frac{3 n(n-1)(7 n+1)}{(4 n-1)(2 n-1)(4 n-3)}$
r. $\frac{3 n(n-1)}{(4 n-1)(2 n-1)(4 n-3)}$

Q65.
Match the following :
a. If β be a root of the equation $x^{5}-1=0$ then p. 4 $\beta^{15}+\beta^{16}+\ldots+\beta^{50}$ must be equation
b. If $2 f\left(x^{2}\right)+3 f\left(\frac{1}{x^{2}}\right)=x^{2}-1$, then $f(1)$ is equal to \quad q. 1
c. The number of solutions of $|x+1|=|x-1|$ is r. 3
d. The least positive integer for which $4^{\mathrm{x}}+8^{\frac{2}{3}(\mathrm{x}-2)}-$ s. 0
$72-4^{x-\frac{3}{2}}$ is non-negative

Q 66.

Match the following :
a. The distance between circumcentre and Incentre p. 6 of triangle, the affixes of whose vertices are
$1, w, w^{2}$ is
b. If ${ }^{2 \mathrm{n}} \mathrm{C}_{4},{ }^{2 \mathrm{n}} \mathrm{C}_{5},{ }^{2 \mathrm{n}} \mathrm{C}_{6}$ are in A.P then n is \quad q. 3
c. On $[0,2]$ the maximum value of $f(x)=\max$
r. 0 $\left\{x^{2}, x-1,3 x\right\}$ is
d. If $f(x)=[x]+\sum_{r=1}^{2008} \frac{x+r-[x+r]}{2008}$ then $f(3)=$
s. 7

Paper - II

Part-I (physics)

Section-I

Straight Objective Type

O1
The ratio of de-Broglie wavelength of molecules of Hydrogen and Helium which are at $27^{\circ} \mathrm{C}$ and $127^{\circ} \mathrm{C}$ respectively is
a. $\sqrt{\frac{5}{3}}$
b. $\sqrt{\frac{8}{3}}$
c. $\sqrt{\frac{3}{5}}$
d. $\sqrt{\frac{3}{8}}$

Q2
A uniform rod of length l is placed with one end in contact with the horizontal table and is then inclined to an angle \propto to the horizontal and allowed to fall. When it becomes horizontal, its angular velocity will be.
a. $\omega=\sqrt{\frac{3 \mathrm{~g} \sin \alpha}{1}}$
b. $\omega=\sqrt{\frac{21}{3 \mathrm{~g} \sin \alpha}}$
c. $\omega=\sqrt{\frac{\mathrm{g} \sin \alpha}{\mathrm{l}}}$
d. $\omega=\sqrt{\frac{1}{\mathrm{~g} \sin \alpha}}$

Q3

Two wires A and B of same material but radii r_{1} and r_{2} support a mass M as shown. If a force of $\frac{\mathrm{Mg}}{3}$ is applied at the free end, then :
a. for $r_{1}=r_{2}$, string B breaks before A
b. for $r_{1}<2 r_{2}$, string B breaks before A
c. string B breaks always first
d. for $r_{1}=2 r_{2}$, any of them may break

Q4

A plane mirror is made of glass slab of refractive index $\mu=1.5$, thickness 2.5 cm and silvered on the back. A point object is placed 5 cm in front of the un-silvered face of the mirror. The position of final image is from front face.

a. 12 cm .
b. 14.6 cm .
c. 5.67 cm .
d. 8.33 cm .

Q5
The ratio of time constant during charging and discharging in the circuit shown is
a. $1: 1$
b. $3: 2$
c. $2: 3$
d. $1: 3$

Q6

Sliding contact in circuit shown, moves with uniform velocity towards right. Value of resistance at an instant is 4Ω. Then at that instant
a. Current in the circuit 0.5 A

b. Current in the circuit is greater than 0.5 A
c. Current in the circuit is less than 0.5 A
d. There is a small current of 6 mA in the circuit

07

A conducting ring of mass 2 kg and radius 0.5 m is placed on a smooth horizontal plane. The ring carries a current of 4 A . A horizontal magnetic field $\mathrm{b}=10 \mathrm{~T}$ is switched on at time $\mathrm{t}=0$. The initial angular acceleration of the ring will be

a. $40 \pi \mathrm{rad} / \mathrm{s}^{2}$
b. $20 \pi \mathrm{rad} / \mathrm{sec}^{2}$
c. $5 \pi \mathrm{rad} / \mathrm{s}^{2}$
d. $15 \pi \mathrm{rad} / \mathrm{sec}^{2}$

O8

A particle is projected with a speed u_{0} at an angle θ with the horizontal. Radius of curvature of the highest point is :
a. $\frac{\mathrm{u}^{2} \cos ^{2} \theta}{\mathrm{~g}}$
b. $\frac{\mathrm{u}^{2} \sin ^{2} \theta}{\mathrm{~g}}$
c. $\frac{\mathrm{u}^{2}}{\mathrm{~g}}$
d. $\frac{\mathrm{u}^{2}}{\mathrm{~g} \cos \theta}$

In as Isothermal expansion of ideal gas
a. $\Delta \mathrm{T}=0$
b. $\Delta U=0$
c. the work done by gas is equal to heat supplied to the gas.
d. $W=\Delta U$

Section-II

Assertion-Reason Type

Q10

Statement-1:

Kirchhoff's rule law represents conservation of energy. because

Statement-2:

If the sum of potential changes around a closed loop is not zero, unlimited energy could be gained b repeatedly carrying a charge around a loop
a. Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1
b. Statement-1 is True, Statement-2 is True; Statement-2 is not a correct explanation for Statement-1
c. Statement-1 is True, Statement-2 is False
d. Statement-1 is False, Statement-2 is True

Q11

Statement-1:

Internal energy change is zero if the temperature is constant, irrespective of the process being cyclic or non-cyclic. because

Statement-2:

$\mathrm{dU}=\mathrm{nC}_{\mathrm{V}} \mathrm{dT}$ for all processes and is independent of path.
a. Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1
b. Statement-1 is True, Statement-2 is True; Statement-2 is not a correct explanation for Statement-1
c. Statement-1 is True, Statement-2 is False
d. Statement-1 is False, Statement-2 is True

012

Statement-1:

Rise of water level in capillary tube should be accounted vertically and not on the length of the pipe in which it has raised.
because

Statement-2:

More the radius, the rise will decrease for different liquids tested.
a. Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1
b. Statement-1 is True, Statement-2 is True; Statement-2 is not a correct explanation for Statement-1
c. Statement-1 is True, Statement-2 is False
d. Statement-1 is False, Statement-2 is True

$\underline{013}$

Statement-1:

An iron ball and a wooden ball are both released at the same height. In the presence of a medium both the balls reach the ground with different velocities and different times. because

Statement-2:

Both the balls reach the ground simultaneously.
a. Statement- 1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1
b. Statement-1 is True, Statement-2 is True; Statement-2 is not a correct explanation for Statement-1
c. Statement-1 is True, Statement-2 is False
d. Statement-1 is False, Statement-2 is True

Section-III

Linked Comprehension Type

M_{14-16} : Paragraph for Question Nos. 14 to 16

A potentiometer wire of length 10 m shows null points shifted by 60 cm for two cells with a emf difference of 0.4 volt.

$\mathbf{0 1 4}$

Potential gradient along the potentiometer wire is, (in V/m)
a. $\frac{2}{3}$
b. $\frac{3}{2}$
c. $\frac{20}{3}$
d. $\frac{4}{5}$

015
Potential across the potentiometer wire is, (in volt)
a. $\frac{2}{3}$
b. $\frac{20}{3}$
c. $\frac{3}{2}$
d. $\frac{30}{2}$

Q16

If the point P is connected to the +ve end of the potentiometer wire and Q is connected to the galvanometer, the balancing length is
a. 30 cm

b. 60 cm
c. 90 cm
d. 45 cm

M_{17-19} : Paragraph for Question Nos. 17 to 19

A particle of mass 3 kg is moving under the action of central force, whose potential energy is given by $\mathrm{U}(\mathrm{r})=10 \mathrm{r}^{3}$ Joule.

$\mathbf{0 1 7}$

For the particle to move in a circle of radius 10 m , the velocity is :
a. $10 \mathrm{~m} / \mathrm{s}$
b. $1 \mathrm{~m} / \mathrm{s}$
c. $100 \mathrm{~m} / \mathrm{s}$
d. $1000 \mathrm{~m} / \mathrm{s}$

Q18

The angular momentum for the particle to orbit in the circle, is :
a. $3 \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{sec}$
b. $30 \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{sec}$
c. $300 \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{sec}$
d. $3000 \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{sec}$

$\mathbf{0 1 9}$

The total energy in circular motion is :
a. 5 J
b. $25 \times 10^{3} \mathrm{~J}$
c. $5 \times 10^{3} \mathrm{~J}$
d. 0.5 J

Section-IV

Matrix-Match Type

Q20

Column I

a. Area between $V=0, t=0$ and a constant $V \neq 0, t \neq 0$
b. Intersecting straight line $x-t$ graphs for two bodies.
c. Intersecting straight line $V-t$ graphs for two bodies.
d. Equations of Motion.

Column II

p. Uniform motion
q. Uniform Acceleration.
r. Displacement of the body on motion.
s. Equal velocity at a time.
t. Same position.

Q21

Column I

a. Wires made of some material
b. Work done in stretching a wire
c. poisson's ratio $=0.5$
d. Extension is more

Column II

p. Elasticity is less
q. Volume $=$ constant
r. Modulus of elasticity is constant
s. $1 / 2 \times$ Volume \times Stress \times Strain
t. $\frac{d r}{r}=-\frac{1}{2} \frac{d l}{l}$

$\mathbf{0 2 2}$

Column I

a. Rocket Propulsion
b. Area under force-time graph
c. change in speed of a 5 kg mass from say 2 to 5 ms^{-1}
d. Equal masses under collision

Column II
p. Impulse
q. For one being at rest oblique collision will move them at right angles
r. Acceleration with reducing mass.
s. Have some velocity when coefficient of restitution is zero

Part-II (Chemistry)

Section-I

Straight Objective Type

$\underline{023}$

On heating one mole KCIO_{3}, one mole of O_{2} is formed. Calculate the mole fraction of KCIO_{4} in the final mixture containing only KCI and $\mathrm{KCIO}_{4}, \mathrm{KCIO}_{4}$ is obtained by parallel reaction.
a. 0.50
b. 0.25
c. 0.33
d. 0.20

$\mathbf{0 2 4}$

The different intermediates formed during Hofmann bromamide synthesis are
a. $\mathrm{R}-\quad \begin{aligned} & \mathrm{C} \\ & \\ & \\ & \\ & 0\end{aligned}$
b. $R-N=C=0$
c. Both (a) and (b)
d.

025

Pb and Sn can be extracted from their sulphide and oxide ore respectively by
a. Froth floatation, roasting, self-reduction; Hydraulic washing, calcination, carbon reduction
b. Hydraulic washing, calcination, electrolysis; Froth floatation, roasting, carbon reduction
c. Froth floatation, roasting, carbon reduction; Hydraulic washing, roasting, self-reduction
d. None of these
KO_{2} (Potassium superoxide) is used in oxygen cylinders in space and submarines because it
a. Absorbs CO_{2} and increase O_{2} content
b. Eliminates moisture
c. Absorbs CO_{2}
d. Produces ozone

$\mathbf{0 2 7}$

The Fischer projection formula of (+)-lactic acid is as
Which of the following is correct?

a. $\mathrm{H}_{3} \mathrm{C}$ - and -COOH groups are coming out of the plane.
b. H-0 and $_\mathrm{OH}$ are coming out of the plane.
c. $\mathrm{H}_{3} \mathrm{C}-$ and -COOH group are going into the plane.
d. All are correct.

Q28

What will be binding energy per nucleon of ${ }_{8}^{16} 0$ if mass defect is 0.210 amu ?
a. 195.61 MeV
b. 12.2 MeV
c. 14.0 MeV
d. 16.0 MeV

$\mathbf{0 2 9}$

Sn reacts with conc. HNO_{3} to give
a. $\mathrm{Sn}\left(\mathrm{NO}_{3}\right)_{2}$
b. $\mathrm{H}_{2} \mathrm{SnO}_{3}$
c. SnO
d. None of these

Q30

Which of the following are isotonic with one another?

1. 0.15 M urea
2. $0.15 \mathrm{MCaCl}_{2}$
3. $0.15 \mathrm{M} \mathrm{MgSO}_{4}$
4. 0.15 M glucose
a. (i) and (ii)
b. (i), (ii), (iii), (iv)
c. (i) and (iv)
d. (ii) and (iii)

O31

One gram of ${ }_{88}^{226} R a$ has an activity nearly one Ci (Curie). The $t_{1 / 2}$ of ${ }_{88}^{226} R a$ is
a. 1600 years
b. 12.5 years
c. 3200 years
c. 1700 years

Section-II

Assertion-Reason Type

$\mathbf{0 3 2}$

Statement-1:

Mathanoic acid changes mercuric chloride to mercurous chloride (white ppt.) on heating but acetic acid does not. because

Statement-2:

Methanoic acid is stronger reducing agent than ethanoic acid.
a. Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1
b. Statement-1 is True, Statement-2 is True; Statement-2 is not a correct explanation for Statement-1
c. Statement-1 is True, Statement-2 is False
d. Statement-1 is False, Statement-2 is True

Q33

Statement-1:

The vapour pressure of water at $2727^{\circ} \mathrm{C}$ in a one litre closed flask is greater than the vapour pressure of same amount of water in 3 L flask at $27^{\circ} \mathrm{C}$. because

Statement-2:

The pressure of gas at a particular temperature is inversely proportional to volume of the gas.
a. Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1
b. Statement-1 is True, Statement-2 is True; Statement-2 is not a correct explanation for Statement-1
c. Statement-1 is True, Statement-2 is False
d. Statement-1 is False, Statement-2 is True

034

Statement-1:

The conversion of $\mathrm{NH}_{4} \mathrm{CNO}$ into urea is an isomerization reaction. because

Statement-2:

Urea is the first organic compound prepared in the lab.
a. Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1
b. Statement-1 is True, Statement-2 is True; Statement-2 is not a correct explanation for Statement-1
c. Statement-1 is True, Statement-2 is False
d. Statement-1 is False, Statement-2 is True

Q35

Statement-1:

$\mathrm{C}-\mathrm{H}$ bond in $\mathrm{CH} \equiv \mathrm{CH}$ is stronger than $\mathrm{C}-\mathrm{H}$ bond in $\mathrm{CH}_{2}=\mathrm{CH}_{2}$. because

Statement-2:

Sp -s overlapping is more effective than $\mathrm{sp}^{2}-\mathrm{s}$ overlapping due to increase in size of sp^{2} hybridised orbital.
a. Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1
b. Statement-1 is True, Statement-2 is True; Statement-2 is not a correct explanation for Statement-1
c. Statement-1 is True, Statement-2 is False
d. Statement-1 is False, Statement-2 is True

Section - III

Linked Comprehension Type

For a particular ion to be deposited at cathode, it requires minimum voltage which must be applied across the electrodes. The minimum voltage required is called discharge potential.

Increasing order of deposition of some metals:
$\mathrm{Li}^{+}<\mathrm{K}^{+}<\mathrm{Ca}^{2+}<\mathrm{Na}^{+}<\mathrm{Mg}^{2+}<\mathrm{Al}^{3+}<\mathrm{Zn}^{2+}<\mathrm{Fe}^{2+}<\mathrm{Ni}^{2+}<\mathrm{H}^{+}<\mathrm{Cu}^{2+}<\mathrm{Hg}_{2}{ }^{2+}<\mathrm{Ag}^{+}<\mathrm{Au}^{3+}$
For anions $\mathrm{SO}_{4}{ }^{2-}<\mathrm{NO}_{3}{ }^{-}<\mathrm{OH}^{-}<\mathrm{Br}^{-}<\mathrm{I}^{-}$
Lower the value of discharge potential, grater will be ease of deposition.

Q36

The products formed at anode and cathode, when dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$ is electrolyzed are
a. $\mathrm{O}_{2}, \mathrm{H}_{2}$
b. $\mathrm{SO}_{2} \mathrm{H}_{2}$
c. $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}, \mathrm{H}_{2}$
d. $\mathrm{SO}_{3}, \mathrm{H}_{2}$

$\mathbf{0 3 7}$

The amount of energy expanded when current of 1 amp is passed for 100 seconds under a potential difference of 115 V is equal to
a. 11.5 J
b. 11.5 kJ
c. 11.5 kW
d. 11.5 kcal

038

When $\mathrm{H}_{2} \mathrm{O}$ is electrolyzed using 1 Faraday of charge, volume of O_{2} liberated at anode at STP is equal to
a. 22.4 L
b. 11.2 L
c. 5.6 L
d. 2.8 L

C_{39-41} : Paragraph for Question Nos. 39 to 41

A compound (W) $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}$ is treated with benzene sulphonyl chloride and aqueous KOH no apparent change occurs. Acidification of the mixture gives a clear solution. When W is reacted with $\mathrm{CH}_{3} \mathrm{I}$, an optically active compound (Y) is formed. Y gives yellow precipitate with AgNO_{3} solution. When Y is heated with $\mathrm{Ag}_{2} \mathrm{O}$ then an amine of molecular formula $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}$ and ethylene are formed.

$\mathbf{0 3 9}$

The degree of unsaturation in $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}$ is....and the number of pheny1 group could be...
a. 8,8
b. 2,8
c. 2, 2
d. 8,2

$\underline{\mathbf{Q 4 0}}$

The compound W is therefore
(a)

(b)

(c)

(d)

$\mathbf{0 4 1}$

When p -toluidine is diazotized and reacted with β-naphthol in basic medium then the compound formed is
(a)

(b)

(c)

(d)

Section-IV

Matrix-Match Type

$\underline{\mathbf{0 4 2}}$

Column I

a. Dilution
b. Increase in temperature
c. Atmospheric pressure
d. Nature of electrode

Column II

p. discharging of ions
q. reduction potential
r. Equilibrium constant
s. Vapour pressure

$\underline{\mathbf{Q 4 3}}$

Column I

a. $>=0 \rightarrow \propto$-Hydroxy carboxylic acid

R-COOH \rightarrow R- $\mathrm{CH}_{2} \mathrm{COOH}$
$\mathrm{R}-\mathrm{CH}=\mathrm{CH}-\mathrm{CHO} \rightarrow \mathrm{R}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2} \mathrm{OH}$
d. Regioselective conversion of alkenes to alcohols.

Column II
p. Arndt Eistert synthesis
q. $\mathrm{Hg}(\mathrm{OAc})_{2} / \mathrm{AcOH}$
r. (i) HCN (ii) $\mathrm{H}^{+} / \mathrm{H}_{2} \mathrm{O}$
s. NaBH_{4}.

$\underline{\mathbf{Q 4 4}}$

Column I

a. $2^{\text {nd }}$ most abundant element in the earth crust.
b. Most abundant transition element

Column II

c. Most abundant element in the earth crust.
p. Fe
d. Most abundant element in the universe.
q. H_{2}
r. Si
s. O_{2}

Part-III (Mathematics)

Section-I

Straight Objective Type

Q45

The value of $\left(\frac{\sqrt{3}}{2}+i \cdot \frac{1}{2}\right)^{165}$ is
a. -1
b. $\frac{\sqrt{3}}{2}+i \cdot \frac{1}{2}$
c. i
d. $-i$
$\underline{\mathbf{O 4 6}}$
The area of the triangle whose vertices are $(a, a),(a+1, a+1),(a+2, a)$ is
a. a^{3}
b. $2 a$
c. 1
d. $\sqrt{2}$

$\underline{\mathbf{Q 4 7}}$

If in a triangle, $a=2 b$ and $A=3 B$, then the triangle
a. is isosceles
b. is right-angled but not isosceles
c. is right-angled and isosceles
d. None of these

$\underline{\mathbf{Q 4 8}}$

The number of values of x satisfying the equation $\sqrt{\sin x}-\frac{1}{\sqrt{\sin x}}=\cos x$ is
a. 0
b. 2
c. 3
d. more than 3

$\mathbf{0 4 9}$

The least period of the function $\sin x+\tan x / 2-\cos 3 x$ must be
a. $\frac{\pi}{3}$
b. $2 \frac{\pi}{3}$
c. 2π
d. 4π

Q50

The equation of $y^{5} x+y-x \frac{d y}{d x}=0$ is
a. $\frac{x^{4}}{4}+\frac{1}{5}\left(\frac{x}{y}\right)^{5}=C$
b. $\frac{x^{5}}{5}+\frac{1}{4}\left(\frac{x}{y}\right)^{4}=C$
c. $\left(\frac{x}{y}\right)^{5}+\frac{x^{4}}{4}=C$
d. $(x y)^{4}+\frac{x^{5}}{5}=C$

Q51

If w is a complex cube root of unity, then the matrix $A=\left[\begin{array}{ccc}1 & w^{2} & w \\ w^{2} & w & 1 \\ w & 1 & w^{2}\end{array}\right]$ is a
a. singular matrix
b. non-singular matrix
c. skew symmetric matrix
d. None of these

Q52

The number of real values of a for which the system of equations $x+a y-z=0,2 x-y+a z=$ $0, a x+y+2 z=0$ has a non-trivial solution, is
a. 3
b. 1
c. 0
d. infinite

Q53

Let there be two points A, B on the curve $y=x^{2}$ in plane $O X Y$ satisfying $O A . i=1$ and $O B . i=-2$ then the length of the vector $2 O A-30 B$ is
a. $\sqrt{14}$
b. $2 \sqrt{15}$
c. $3 \sqrt{41}$
d. None of these

Section-II

Assertion-Reason Type

054

Statement-1:

n letters are put in n corresponding envelopes at random. The probability that exactly $r(r \leq n)$, letters go to the correct envelop is $1-\frac{C_{r}}{n!}$. because

Statement-2:

n letters in n corresponding envelopes can be put in n ! ways.
a. Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1
b. Statement-1 is True, Statement-2 is True; Statement-2 is not a correct explanation for Statement-1
c. Statement-1 is True, Statement-2 is False
d. Statement-1 is False, Statement-2 is True

Q55

Statement-1:

The minimum value of $|2 x-1|+|3 x-2|+|4 x-3|$ is $\frac{2}{3}$. because

Statement-2:

If $a<b<c$, then minimum value of $A|x-a|+B|x-b|+C|x-c|(A, B, C>0)$ is attained at $x=\mathrm{b}$.
a. Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1
b. Statement-1 is True, Statement-2 is True; Statement-2 is not a correct explanation for Statement-1
c. Statement-1 is True, Statement-2 is False
d. Statement-1 is False, Statement-2 is True

Q56

Statement-1:

If $l_{n}=\int_{0}^{\pi / 2} \sin ^{n} x d x$ where n is a positive integer then l_{n} is rational if n is odd. because

Statement-2:

$. l_{n}=\frac{n-1}{n} l_{n-2}$
a. Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1
b. Statement-1 is True, Statement-2 is True; Statement-2 is not a correct explanation for Statement-1
c. Statement-1 is True, Statement-2 is False
d. Statement-1 is False, Statement-2 is True

Statement-1:

$\frac{\tan 3 x}{\tan x}=\tan \left(\frac{\pi}{3}-x\right) \tan \left(\frac{\pi}{3}+x\right)$ is an identity if $x \neq \frac{K \pi}{6}$, where K is an integer. because

Statement-2:

$\tan x$ is defined if $x \neq(2 m+1) \frac{\pi}{2}$, whrere m is a positive integer.
a. Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1
b. Statement-1 is True, Statement-2 is True; Statement-2 is not a correct explanation for Statement-1
c. Statement-1 is True, Statement-2 is False
d. Statement-1 is False, Statement-2 is True

Section-III

Linked Comprehension Type

M_{58-60} : Paragraph for Question Nos. 58 to 60

Consider the ellipses $E_{1}: a^{2} x^{2}+b^{2} y^{2}=1, E_{2} \cdot B^{2} x^{2}+a^{2} y^{2}=1(0<a<b)$ and answer the following questions

Q58

The distance between any foci of E_{1} and any foci of E_{2} must be
a. $\frac{\sqrt{2} \sqrt{b^{2}-a^{2}}}{a b}$
b. $\frac{\sqrt{3} \sqrt{b^{2}-a^{2}}}{a b}$
c. $\sqrt{a^{2}+b^{2}}$
d. None of these

Q59

If area bounded by E_{1} and E_{2} is $4 \int_{0}^{\alpha} \frac{\sqrt{1-a^{2} x^{2}}}{b}+\int_{\alpha}^{\beta} \frac{\sqrt{1-b^{2} x^{2}}}{a} d x$ then
a. $\alpha=\frac{1}{\sqrt{a b}}, \beta=\frac{1}{b}$
b. $\alpha=\frac{1}{\sqrt{a^{2}+b^{2}}}, \beta=\frac{1}{a}$
c. $\alpha=\frac{1}{\sqrt{a^{2}}+b^{2}}, \beta=\frac{1}{b}$
d. None of these

$\underline{060}$

The value of the integral described in Q. 59 above is
a. $\frac{4}{a b} \tan ^{-1} \frac{a}{b}$
b. $\frac{4}{\sqrt{a b}} \tan ^{-1} \frac{a}{b}$
c. $\frac{4}{\sqrt{a b}} \tan ^{-1} \frac{a}{b}$
d. None of the above

M_{61-63} : Paragraph for Question Nos. 61 to 63

Consider the number function $f(n)$ defined by $f(n)=2^{2^{n}}+1(n \in N)$.

Q61

$(f(n)-1)^{2}$ is equal to
a. $f(2 n)-1$
b. $f(n+1)-1$
c. $f(n+1)-1$
d. None of these

Q62

If m and n are distinct positive integers then
a. HCF of (m) and $f(n)$ can be a non-unity number
b. HCF of $f(m)$ and $f(n)$ is essentially
c. $\mathrm{HCF}=\min (m, n)$
d. None of these

Q63

The correct answer in Q. 62 implies
a. The number of prime numbers is finite
b. The number of prime numbers is infinite
c. The gaps between two successive primes can be as large as possible
d. None of these

Section-IV

Matrix-Match Type

Q64

Let $I_{m}=\int_{0}^{\infty} e^{-x}(\sin x)^{m} d x$ where m is a positive integer greater than 2 , then $A I_{5}=B I_{3}$ whence A, B are positive integers. Then match the following :
a. A
p. 24
b. B
q. 26
c. $85 I_{4}$
r. 20

O65
If $\int \frac{d x}{(2 x-3) \sqrt{4 x-x^{2}}}=C-\frac{1}{\sqrt{A}} \ln \left|\frac{x+B \sqrt{D x-E x^{2}}}{2 x-3}\right|,(A, B, C, D$ are independent of x, then match the following:
a. A
p. 6
b. B
q. 60
c. C
r. 15
d. D
e. E

Q66

Match the limits of following expressions when $\rightarrow \infty$:
a. $\frac{1}{\mathrm{n}}+\frac{\mathrm{n}^{2}}{(\mathrm{n}+1)^{3}}+\frac{\mathrm{n}^{2}}{(\mathrm{n}+2)^{3}}+\ldots+\frac{1}{8 \mathrm{n}}$
p. 1/24
b. $\frac{1}{n}+\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{4 n}$
q. $\pi / 2$
c. $\sum_{\mathrm{r}=1}^{3 \mathrm{n}} \frac{\mathrm{n}^{3}}{(3 \mathrm{n}+\mathrm{r})^{3}}$
r. $\log 4$
d. $\frac{1}{\sqrt{2 n-1^{2}}}+\frac{1}{\sqrt{4 n-2^{2}}}+\frac{1}{\sqrt{6 n-3^{2}}}+\ldots+\frac{1}{n}$
s. $3 / 8$

