JEE (MAINS) MODEL GRAND TEST

No. of Questions: 90

Marks: 360

Time: 3 Hrs.

PHYSICS

Statement-1: In simple harmonic motion, the velocity is maximum when the acceleration is minimum. 1. Statement-2: Displacement and velocity of a particle executing simple harmonic motion differ in phase by $\frac{\pi}{2}$ A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1. C) Statement-1 is True, Statement-2 is False. D) Statement-1 is False, Statement-2 is True. The position of a particle moving along x – axis is given by $x = 3t^2 - t^3$ where x is in m and t is in s. 2. Consider the following statements: i) Displacement of the particle after 4 s is 16 m. ii) Distance travelled by the particle upto 4 s is 24 m. iii) Displacement of the particle after 4 s is -16 m. iv) Distance covered by the particle upto 4 s is 22 m. Select the correct alternative. A) statements (i) and (ii) only are correct. B) statements (ii) and (iii) only are correct. C) statements (i) and (iii) only are correct. D) None of these Two particles positioned at A(5, 3) and B(7, 3) are moving with constant velocity $2\ddot{i} + 3\ddot{j}$ and 3. x $\hat{i} + y \hat{j}$ respectively. After 2 s they collide, then the values of x and y are respectively B) 1, 3 A) 2, 2 C) 3, 2 D) 1, 1 If the frequency of K_{α} , X – ray emitted by the element with atomic number 41 be f, then the frequency 4. of K_{α} , X – ray emitted from the element with atomic number 61 would be A) $\frac{1681}{3721}$ f B) $\frac{3721}{1681}$ f D) $\frac{4}{0}$ f For the arrangement shown in figure the coefficient of friction between any 5. 1 kg two surfaces is 0.5. Which of the following graphs shows correct variation of 2 kg frictional force 'f' between the 2 kg block and floor with the applied force F? (Take leftward direction of f as positive.) f(N)B) A) D) A particle is acted upon by a conservative force $\vec{F} = (7\hat{i} - 6\hat{j})N$ (no other force is acting on the 6. particle). Under the influence of this force particle moves from (0, 0) to (-3 m, 4 m), then A) work done by the force is 3 J B) work done by the force is -45 J C) at (0, 0) speed of the particle must be zero D) None of these

27. A L-R circuit is connected to a battery at time t = 0. The energy stored in the inductor reaches half its maximum value at time

A)
$$\frac{R}{L} \ln \left[\frac{\sqrt{2}}{\sqrt{2} - 1} \right]$$

B) $\frac{L}{R} \ln \left[\frac{\sqrt{2} - 1}{\sqrt{2}} \right]$
C) $\frac{L}{R} \ln \left[\frac{\sqrt{2}}{\sqrt{2} - 1} \right]$
D) $\frac{R}{L} \ln \left[\frac{\sqrt{2} - 1}{\sqrt{2}} \right]$

When the object is at distances u₁ and u₂ from the optical center of a convex lens, a real and a virtual 28. image of the same magnification is obtained. The focal length of the lens is

A)
$$\frac{u_1 - u_2}{2}$$
 B) $2u_1$ C) $2u_2$ D) $\frac{u_1 + u_2}{2}$

29. A stationary hydrogen atom emits photon corresponding to the first line of Lymann series. If R is the Rydberg's constant and M is the mass of the atom, then the velocity acquired by the atom is

A)
$$\frac{3Rh}{4M}$$
 B) $\frac{Rh}{4M}$ C) $\frac{Rh}{2M}$ D) $\frac{Rh}{M}$

30. Statement-1: A thin stainless steel needle can lay floating on a still water surface.

Statement-2: Any object floats in a liquid when the buoyant force balances the weight of the object.

- A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
- B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1.
- C) Statement-1 is True, Statement-2 is False.
- D) Statement-1 is False, Statement-2 is True.

MATHEMATICS

A particle P starts from the point $z_0 = 1 + 2i$, where $i = \sqrt{-1}$. It moves first horizontally away from 31. origin by 5 units and then vertically away from origin by 3 units to reach a point z_1 . From z_1 the particle moves $\sqrt{2}$ units in the direction of the vector $\mathbf{i} + \mathbf{j}$ and, then it moves through an angle $\frac{\pi}{2}$ in anti clockwise direction on a circle with centre at origin, to reach a point z_2 . The point z_2 is given by

If the sum of first n terms of an A.P. is cn^2 , then the sum of squares of these n terms, is 32.

A)
$$\frac{n(4n^2-1)c^2}{6}$$
 B) $\frac{n(4n^2+1)c^2}{3}$ C) $\frac{n(4n^2-1)c^2}{3}$ D) $\frac{n(4n^2+1)c^2}{6}$

Let a, b, c be real. If $ax^2 + bx + c = 0$ has two real roots α and β , where $\alpha < -1$ and $\beta > 1$, 33. then $1 + \frac{c}{a} + \left|\frac{b}{a}\right|$ is $C \le 0$ D) None

A) <
$$0$$

C) 0

- At an election, a voter may vote for any number of candidates not greater than the number to be 34. elected. There are 10 candidates and 4 are to be elected. If a voter votes for atleast one candidate, then the number of ways in which he can vote, is

C) 1110 D) 5040

35. For r = 0, 1, ..., 10, let A_r , B_r and C_r denote, respectively, the coefficient of x^r in the expansions of $(1+x)^{10}$, $(1+x)^{20}$ and $(1+x)^{30}$

Then $\sum_{r=1}^{10} A_r (B_{10} B_r - C_{10} A_r)$ is equal to A) $B_{10} - C_{10}$

B) 385

B)
$$A_{10} \left(B_{10}^2 - C_{10} A_{10} \right)$$

D) $C_{10} - B_{10}$

36.	The number of A in T_p such that A is either symmetric or skew-symmetric or both, and det(A) is divisible by p is					
	A) (p –1) ²	B) 2(p -1)	C) $(p-1)^2 + 1$	D) 2p –1		
37.	The number of matrices A in A for which the system of linear equations A $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ is					
	inconsistent, is		L			
20	A) 0	B) more than 2	C) 2	D) 1		
38.	Let ω be a complex cube root of unity with $\omega \neq 1$. A fair die is thrown three times. If r_1 , r_2 and r_3 are the numbers obtained on the die, then the probability that $\omega^r 1 + \omega^r 2 + \omega^r 3 = 0$ is					
	$A)\frac{1}{18}$	$B)\frac{1}{9}$	$C)\frac{2}{9}$	D) $\frac{1}{36}$		
39.	If $P(u_i) \propto i$, where $i = 1, 2, 3,, n$, then $\lim_{n \to \infty} P(w)$ is equal to					
	A) 1	$B)\frac{2}{3}$	C) $\frac{1}{4}$	$D)\frac{3}{4}$		
40.	Let $\theta \in \left(0, \frac{\pi}{4}\right)$ and $t_1 = (\tan \theta)^{\tan \theta}$, $t_2 = (\tan \theta)^{\cot \theta}$, $t_3 = (\cot \theta)^{\tan \theta}$ and $t_4 = (\cot \theta)^{\cot \theta}$, then					
	A) $t_1 > t_2 > t_3 > t_4$	B) $t_4 > t_3 > t_1 > t_2$	C) $t_3 > t_1 > t_2 > t_4$	D) $t_2 > t_3 > t_1 > t_4$		
41.	In a \triangle ABC, a, c, A are given and b ₁ , b ₂ are two values, if the third side b such that b ₂ = 2b ₁ , then sin A is equal to					
	$A)\frac{\sqrt{9a^2-c^2}}{8a^2}$	$B)\sqrt{\frac{9a^2-c^2}{8c^2}}$	$C)\frac{\sqrt{9a^2+c^2}}{8a^2}$	D) None of these		
42.	For two data sets, each of size 5, the variances are given to be 4 and 5 and the corresponding means are given to be 2 and 4, respectively. The variance of the combined data set is					
	A) $\frac{5}{2}$	$B)\frac{11}{2}$	C) 6	$D)\frac{13}{2}$		
43.	The locus of the orthocenter of the triangle formed by the lines $(1 + p) x - py + p (1 + p) = 0$, $(1 + q) x - qy + q (1 + q) = 0$, and $y = 0$ where $p \neq q$ is					
	A) hyperbola	B) a parabola	C) an ellipse	D) a straight line		
44.	A circle C of radius 1 is inscribed in an equilateral \triangle PQR. The points of contact of C with sides PQ, QR, RP are D, E, F respectively. The line PQ is given by the equation $\sqrt{3}x + y - 6 = 0$ and the point					
	D is $\left(\frac{3\sqrt{3}}{2}, \frac{3}{2}\right)$. Further, it is given that the origin and the centre of C are on the same side of the					
	line PQ. The equation of circle C is					
	A) $(x - 2\sqrt{3})^2 + (y - 1)^2$	A) $(x - 2\sqrt{3})^2 + (y - 1)^2 = 1$ B) $(x - 2\sqrt{3})^2 + (y + \frac{1}{2})^2 = 1$				
	C) $(x - \sqrt{3})^2 + (y + 1)^2$	$)^2 = 1$	D) $(x - \sqrt{3})^2 + (y - 1)^2$	$(1)^2 = 1$		
45.	If two chords having lengths $a^2 - 1$ and $3(a + 1)$ where a is a constant of a circle bisect each other, then the radius of the circle is					
	A) 6	B) $\frac{15}{2}$	C) 8	D) $\frac{19}{2}$		
46.	46. Consider the two curves $C_1 : y^2 = 4x$ and $C_2 : x^2 + y^2 - 6x + 1 = 0$, then					
	A) C_1 and C_2 touch each other only at one point					
	B) C_1 and C_2 touch each other exactly at two points					
	C) C_1 and C_2 intersect (but do not touch) at exactly two points					
	D) C_1 and C_2 neither intersect nor touch each other.					

47.	Let $P(x_1, y_1)$ and $Q(x_2, y_2)$, $y_1 < 0, y_2 < 0$), be the end points of the	latusrectum of the ellipse		
	$x^2 + 4y^2 = 4$. The equations of parabolas with latusrectum PQ are				
	A) $x^2 + 2\sqrt{3}y = 3 + \sqrt{3}$	B) $x^2 - 2\sqrt{3} y = 3 + \sqrt{3}$	$\frac{3}{2}$		
40	C) $x^2 + 2\sqrt{3}y = 3 - \sqrt{3}$	D) $x^2 - 2\sqrt{3y} = 3 - \sqrt{3}$	3		
48.	An ellipse intersects the hyperbola $2x^2 - 2y^2 = 1$ orthogonally. The eccentricity of the ellipse is reciprocal to that of the hyperbola. If the axes of the ellipse are along the coordinates axes, then				
	A) Equation of ellipse is $x^2 + 2y^2 = 2$	B) The foci of ellipse ar	e(+2, 0)		
	C) Equation of ellipse is $x^2 + 2y^2 = 4$	D) The foci of ellipse ar	$e(\pm \sqrt{2}, 0)$		
	-) =1	- ,			
49.	Let f be a real-valued function defined on the interval (-1, 1) such that $e^{-x} f(x) = 2 + \int_{0}^{\infty} \sqrt{t^4 + 1} dt$,				
	for all $x \in (-1, 1)$ and let f^{-1} be the inverse function of f. Then, $(f^{-1})(2)$ is equal to				
	A) 1 B) $\frac{1}{3}$	C) $\frac{1}{2}$	D) $\frac{1}{e}$		
50.	If $f(x) = \min \{1, x^2, x^3\}$, then	0	-		
	A) f (x) is not continuous every where				
	B) f (x) is continuous and differentiable every where				
	C) f (x) is not differentiable at two points				
	D) f (x) is not differentiable at one point				
51.	The total number of local maxima and local minima of the function				
	$f(x) = \begin{cases} (2+x)^3, & -3 < x \le -1 \\ 2 & is \end{cases}$				
	$x^{\frac{2}{3}}, -1 < x < 2$		X		
	A) 0 B) 1	C) 2	D) 3		
52. For any real number x, let [x] denotes the largest integer less than or equal to x. Let f be a real valued					
	function defined on the interval [-10, 10] by				
	$\begin{cases} x - [x], & \text{if } [x] \text{ is odd} \\ f(x) = \begin{cases} 1 + [x], & \text{if } [x] \text{ is oven then the} \end{cases}$	\sim	0.		
	$\begin{bmatrix} 1 + \lfloor x \rfloor - x, & \text{if } \lfloor x \rfloor \text{ is even}, \text{ then the} \\ 10 \end{bmatrix}$	$\cdot 0$	P		
	value of $\frac{\pi^2}{1} \int f(x) \cos \pi x dx$ is				
	$\begin{array}{c} 10 \\ 10 \\ -10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 $		D 4		
	A) 1 B) 2 π	C) 3	D) 4		
53.	If In = $\int \frac{\sin nx}{(1-x)^{1/2}} dx$, n = 0, 1, 2,, then, which of the following is not correct?				
	$-\pi (1 + \pi^{\Lambda}) \sin x$	10 Σ 10			
	A) $I_n = I_{n+2}$	B) $\sum_{m=1}^{2} I_{2m+1} = 10\pi$			
	C) $\sum_{n=0}^{10} I_n = 0$	$D)I = I \cdot I$			
	$m = 1^{12}m = 0$	$\frac{1}{2}$,			
54.	The area of the region between the curves $y = \sqrt{-1}$	$\frac{1+\sin x}{\cos x}$ and $y=\sqrt{\frac{1-x}{\cos x}}$	$\frac{\sin x}{\cos x}$ bounded by the		
	lines $x = 0$ and $x = \frac{\pi}{4}$ is		ο X		
	$\sqrt{2}-1$ 4	$\sqrt{2}-1$			
<	A) $\frac{t}{dt}$	B) $\int \frac{4t}{dt} dt$	t		
	$\int_{0}^{1} (1+t^2)\sqrt{1-t^2}$	$\int_{0}^{1} (1+t^2)\sqrt{1-t^2}$			
	$\sqrt{2} + 1$	$\sqrt{2}+1$			
	C) $\int \frac{4t}{dt} dt$	D) $\int \frac{t}{dt} dt$	t		
	$\frac{1}{0}(1+t^2)\sqrt{1-t^2}$	$\int_{0}^{1} (1+t^2)\sqrt{1-t^2}$			

55. Tangent is drawn at any point P of a curve which passes through (1, 1) cutting x-axis and y-axis at A and B respectively. If AP : BP = 3 : 1, then A) Differential equation of the curve is $3x \frac{dy}{dx} + y = 0$ ·ne B) Differential equation of the curve is $3x \frac{dy}{dx} - y = 0$ C) Curve is passing through $\left(\frac{1}{8}, 2\right)$ D) Normal at (1, 1) is x + 3y = 4Let two non-collinear unit vectors \hat{a} and \hat{b} form an acute angle. A point P moves so that at any time t 56. the position vector \overline{OP} (where O is the origin) is given by $\hat{a} \cos t + \hat{b} \sin t$. When P is farthest from origin O, let M be the length of \overline{OP} and \hat{u} be the unit vector along \overline{OP} . Then, A) $\hat{\mathbf{u}} = \frac{\hat{\mathbf{a}} + \hat{\mathbf{b}}}{|\hat{\mathbf{a}} + \hat{\mathbf{b}}|}$ and $\mathbf{M} = (1 + \hat{\mathbf{a}} \cdot \hat{\mathbf{b}})^{\frac{1}{2}}$ B) $\hat{\mathbf{u}} = \frac{\hat{\mathbf{a}} - \hat{\mathbf{b}}}{|\hat{\mathbf{a}} - \hat{\mathbf{b}}|}$ and $\mathbf{M} = (1 + \hat{\mathbf{a}}, \hat{\mathbf{b}})^{\frac{1}{2}}$ C) $\hat{\mathbf{u}} = \frac{\hat{\mathbf{a}} + \hat{\mathbf{b}}}{|\hat{\mathbf{a}} + \hat{\mathbf{b}}|}$ and $\mathbf{M} = (1 + 2\hat{\mathbf{a}}, \hat{\mathbf{b}})^{\frac{1}{2}}$ D) $\hat{\mathbf{u}} = \frac{\hat{\mathbf{a}} - \hat{\mathbf{b}}}{|\hat{\mathbf{a}} - \hat{\mathbf{b}}|}$ and $\mathbf{M} = (1 + 2\hat{\mathbf{a}}, \hat{\mathbf{b}})^{\frac{1}{2}}$ 57. If the volume of a parallelopied with $\vec{a} \times \vec{b}$, $\vec{b} \times \vec{c}$, $\vec{c} \times \vec{a}$ as coterminous edges is 9 cu. Unit, then the volume of the parallelepiped with $(\vec{a} \times \vec{b}) \times (\vec{b} \times \vec{c})$, $(\vec{b} \times \vec{c}) \times (\vec{c} \times \vec{a})$, $(\vec{c} \times \vec{a}) \times (\vec{c} \times \vec{a})$, $(\vec{c} \times \vec{a}$ B) 729 cu unit D) 27 cu unit A) 9 cu unit C) 81 cu unit If the distance between the plane x - 2y + z = d and the plane containing the **58.** lines $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ and $\frac{x-2}{3} = \frac{y-3}{4} = \frac{z-4}{5}$ is $\sqrt{6}$, then |d| is A) 3 D) 6 **59**. Let P (3, 2, 6) be a point in space and Q be a point on the line. Then, the value of μ for which the vector \overline{PQ} is parallel to the plane x - 4y + 3z = 1 is B) $\frac{-1}{4}$ A) $\frac{1}{4}$ $C)\frac{1}{2}$ D) $\frac{-1}{2}$ $\vec{a} = \hat{i} - \hat{j} + \hat{k}$ and $\vec{b} = 2\hat{i} + 4\hat{j} + 3\hat{k}$ are one of the sides and medians respectively, of a triangle through **60.** the same vertex, then area of the triangle is A) $\frac{1}{2}\sqrt{83}$ C) $\frac{1}{2}\sqrt{85}$ D) $\sqrt{86}$ B) √83 CHEMISTRY **61**. A gas absorbs a photon of 355 nm and emits at two wavelengths. If one of the emissions is at 680 nm, the other is at: A) 1035 nm B) 325 nm C) 743 nm D) 518 nm **62.** Which of the following represents the correct order of increasing first ionization enthalpy for Ca, Ba, S. Se and Ar? A) Ca < S < Ba < Se < Ar B) S < Se < Ca < Ba < ArC) Ba < Ca < Se < S < Ar D) Ca < Ba < S < Se < Arwww.eenadupratibha.net

83. Compound (A), C_8H_9Br gives a white precipitate when warmed with alcoholic AgNO₃. Oxidation of (A) gives an acid (B), $C_8H_6O_4$. (B) easily forms anhydride on heating. Identify the compound (A).

84. When phenol is reacted with $CHCl_3$ and NaOH followed by acidification, salicyladehyde is obtained. Which of the following species are involved in the above mentioned reaction as intermediate?

- 85. Iodoform can be prepared from all except:A) Ethyl methyl ketone
 - C) 3–Methyl 2–butanone
- **86.** In the chemical reactions,

net

D) Isobutyl alcohol

- the compounds A and B respectively are
- A) nitrobenzene and fluorobenzene
- B) phenol and benzene
- C) benzene diazonium chloride and fluorobenzene
- D) nitrobenzene and chlorobenzene
- **87.** An organic compound A upon reacting with NH₃ gives B. On heating B gives C. C in presence of KOH reacts with Br₂ to given CH₃CH₂NH₂ is:

A)
$$CH_3COOH$$

B) $CH_3CH_2CH_2COOH$
C) $CH_3-CH-COOH$
 $|$
 CH_3
D) CH_3CH_2COOH

88. The compound OCOCH, is used as COOH A) antiseptic B) antibiotic C) analgesic D) pesticide 89. α – D – (+) – glucose and β – D – (+) – glucose are A) conformers B) epimers C) anomers D) enantiomers 90. Buta–N synthetic rubber is a copolymer of: A) $H_2C = CH - CH = CH_2$ and $H_5C_6 - CH = CH_2$ B) $H_2C = CH - CN$ and $H_2C = CH - CHCH_2$ C) $H_2C = CH - CN$ and $H_2C = CH - C = CH_2$. CH_3 ClD) $H_2C = CH - C = CH_2$ and $H_2C = CH - CH = CH_2$ **KEY**

1-A; 2-B; 3-B; 4-C; 5-C; 6-B; 7-B; 8-C; 9-D; 10-B; 11-C; 12-D; 13-D; 14-D; 15-B; 16-C; 17-B; 18-D; 19-D; 20-D; 21-D; 22-D; 23-B; 24-D; 25-A; 26-C; 27-C; 28-D; 29-A; 30-B; 31-D; 32-C; 33-A; 34-B; 35-D; 36-D; 37-B; 38-C; 39-B; 40-B; 41-B; 42-B; 43-D; 44-D; 45-B; 46-C; 47-B; 48-A; 49-B; 50-A; 51-A; 52-D; 53-A; 54-B; 55-C; 56-A; 57-C; 58-D; 59-A; 60-D; 61-C; 62-C; 63-D; 64-C; 65-B; 66-A; 67-C; 68-B; 69-C; 70-B; 71-C; 72-A; 73-D; 74-B; 75-C; 76-D; 77-B; 78-B; 79-D; 80-B; 81-C; 82-C; 83-D; 84-D; 85-D; 86-C; 87-D; 88-C; 89-C; 90-B.

(This Model Grand Test is prepared by Krishna Murthy IIT Academy, Hyderabad)

www.eenadupratibha.net

www.eenadureat