Solutions of

Computer Science \& IT GAITE-2016

Session 5 | Set-1

MRDE ERSS

IRPDE ERS본

India's Best Institute for IES, GATE \& PSUs

IMRDE ERS노
India's Best Institute for IES, GATE \& PSUs

GATE 2016 : Solutions

Dearstudents,
MADE EASY team has tried to provide the best possible/closest answers, however if you find any discrepancy then write your doubts to MADE EASY at: info@madeeasy.in. MADE EASY owes no responsibility for any kind of error due to data insufficiency/misprint/human errors etc.
B. Singh (Ex. IES), Chairman \& Managing Director, MADE EASY Group

Rewaris \& Honours

MADE EASY will honour its GATE 2016: Top-100 Rankers

AIR 1 Gold Medal + Car

AIR 2 Gold Medal + Bike

AIR 3 Gold Medal + Laptop

AIR 4 Silver Medal + Tab

AIR 11-100 Bronze Medal + Prize

 requested to inform us about your result and avail free Interview \& Counseling Guidance for M.Tech \& PSUs.For more details, visit: www.madeeasy.in
|

Section - I (General Aptitude)

One Mark Questions

Q. 1 Out of the following four sentences, select the most suitable sentence with respect to grammar and usage.
(a) I will not leave the place until the minister does not meet me.
(b) I will not leave the place until the minister doesn't meet me.
(c) I will not leave the place until the minister meet me.
(d) I will not leave the place until the minister meets me.

Ans. (d)
Q. 2 A rewording of something written or spoken is a \qquad .
(a) paraphrase
(b) paradox
(c) paradigm
(d) paraffin

Ans. (a)
Q. 3 Archimedes said, "Give me a lever long enough and a fulcrum on which to place it, and I will move the world." The sentence above is an example of a \qquad statement.
(a) figurative
(b) collateral
(c) literal
(d) figurine

Ans. (a)
End of Solution
Q. 4 If 'relftaga' means carefree, 'otaga' means careful and 'fertaga' means careless, which of the following could mean 'aftercare'?
(a) zentaga
(b) tagafer
(c) tagazen
(d) relffer

Ans. (c)
Q. 5 A cube is built using 64 cubic blocks of side one unit. After it is built, one cubic block is removed from every corner of the cube. The resulting surface area of the body (in square units) after the removal is \qquad -.
(a) 56
(b) 64
(c) 72
(d) 96

Ans. (d)
Original surface area $=6(4)^{2}=96$
If corner cubes are removed, three exposed surfaces are removed which will create 3 new surfaces in original large cube. So surface area will remain unchanged, i.e. 96

Two Marks Questions

Q.6. A shaving set company sells 4 different types of razors, Elegance, Smooth, Soft and Executive. Elegance sells at Rs. 48, Smooth at Rs. 63, Soft at Rs. 78 and Executive at Rs. 173 per piece. The table below shows the numbers of each razor sold in each quarter of a year.

Quarter/ Product	Elegance	Smooth	Soft	Executive
Q1	27300	20009	17602	9999
Q2	25222	19392	18445	8942
Q3	28976	22429	19544	10234
Q4	21012	18229	16595	10109

Which product contributes the greatest fraction to the revenue of the company in that year?
(a) Elegance
(b) Executive
(c) Smooth
(d) Soft

Ans. (b)
Elegance $(27300+25222+28976+21012) \times 48=\mathrm{A}$
Executive $(999+8942+10234+10234+10109) \times 173=\mathrm{B}$
Smooth $(20009+9392+22429+18229) \times 63=\mathrm{C}$
Soft $(17602+18445+19544+16595) \times 78=\mathrm{D}$
Which is highest for B (executive).
Q. 7 Indian currency notes show the denomination indicated in at least seventeen languages. If this is not an indication of the nation's diversity, nothing else is. Which of the following can be logically inferred from the above sentences?
(a) India is a country of exactly seventeen languages.
(b) Linguistic pluralism is the only indicator of a nation's diversity.
(c) Indian currency notes have sufficient space for all the Indian languages.
(d) Linguistic pluralism is strong evidence of India's diversity.

Ans. (d)
Q. 8 Consider the following statements relating to the level of poker play of four players P, Q, R and S. I. P always beats Q II. R always beats S III. S loses to P only sometimes IV. R always loses to Q Which of the following can be logically inferred from the above statements? (i) P is likely to beat all the three other players (ii) S is the absolute worst player in the set
(a) (i) only
(b) (ii) only
(c) (i) and (ii)
(d) neither (i) nor (ii)

Ans. (a)
Following Hierarchy can be drawn.
$\left.\begin{array}{l}\text { P } \\ \mathrm{Q} \\ \mathrm{R} \\ \mathrm{S}\end{array}\right\}$ Individual comparisons are given so, P is more likely to beat other three
as he beats Q and Q beats R and R beats S, so (i) follows.
But no absolute comparison of P and S given in any given. So (ii) cannot be confirmed.
Q. 9 If $f(x)=2 x^{7}+3 x-5$, which of the following is a factor $f(\mathrm{x})$?
(a) $\left(x^{3}+8\right)$
(b) $(x-1)$
(c) $(2 x-5)$
(d) $(x+1)$

Ans. (b)

$$
f(x)=2 x^{7}+3 x-5
$$

Use option (b), if $(x-1)$ will be a factor then on putting $x-1=0$ i.e. $(x=1)$ in $\mathrm{f}(x)$.

$$
f(1)=2(1)^{7}+3-5=5-5=0
$$

Q. 10 In a process, the number of cycles to failure decreases exponentially with an increase in load. At a load of 80 units, it takes 100 cycles for failure. When the load is halved, it takes 10000 cycles for failure. The load for which the failure will happen in 5000 cycles is \qquad .
(a) 40.00
(b) 46.02
(c) 60.01
(d) 92.02

Ans. (b)

Section - II (Computer Science \& IT)

One Mark Questions

Q. 1 Let p, q, r, s represent the following propositions.
$p: x \in\{8,9,10,11,12\}$
$q: x$ is a composite number
$r: x$ is a perfect square
$s: x$ is a prime number
The integer $x \geq 2$ which satisfies $\neg((p \Rightarrow q) \wedge(\neg(-r \vee \neg s))$ is \qquad .

Ans. (11)
We wish to make

$$
\begin{align*}
& \neg((p \Rightarrow q) \wedge(\neg r \vee \neg s)) & =1 \\
\Rightarrow & (p \Rightarrow q) \wedge(\neg r \vee \neg s) & =0 \\
\Rightarrow & (p \Rightarrow q) & =0 \tag{1}\\
\text { or } & \neg r \vee \neg s & =0 \tag{2}
\end{align*}
$$

Now (1) is satisfies only when $\quad p=1$ and $q=0$
Equation (2) $\quad \neg r \vee \neg s=$ iff $r \wedge s=1$
i.e. $r=1$ and $s=1$
i.e. x is a perfect square and x is a prime number. Which is not possible so condition (2) cannot be satisfied by any x.

So condition (1) must be satisfies which is $p=1$ and $q=0$
i.e. $x \in\{8,9,10,11,12$,$\} and x$ is not a composite.

Now the only value of x which satisfies this is $x=11$
So correct answer is $x=11$.
Q. 2 Let a_{n} be the number of n-bit strings that do NOT contain two consecutive 1's. Which one of the following is the recurrence relation for a_{n} ?
(a) $a_{n}=a_{n-1}+2 a_{n-2}$
(b) $a_{n}=a_{n-1}+a_{n-2}$
(c) $a_{n}=2 a_{n-1}+a_{n-2}$
(d) $a_{n}=2 a_{n-1}+2 a_{n-2}$

Ans. (b)
Let a_{n} be the number of n-bit strings that do not contain two consecutive 1's. we wish to develop a recurrence relation for a_{n}.
Consider 1 bit strings 0,1
So

$$
a_{1}=2
$$

Consider 2 bit strings $00,01,10,11$
Out of minimum only $00,01,10$ do not contain two consecutive 1's
So

$$
a_{2}=3
$$

Consider 3 bit strings

Out of minimum six strings only $000,001,010,100$ and 101 five strings satisfy do not contain two consecutive 1's.
So $a_{3}=5$. Three numbers a_{1}, a_{2}, a_{3} satisfy clearly only (b) $a_{n}=a_{n-1}+a_{n-2}$ is correct.
Q. $3 \lim _{x \rightarrow 4} \frac{\sin (x-4)}{x-4}=$ \qquad .

Ans. (1)

$$
\lim _{x \rightarrow 4} \frac{\sin (x-4)}{x-4}
$$

Let $x-4=t$ not as $x \rightarrow 4 t \rightarrow 0$
So the requires limit is $\lim _{t \rightarrow 0} \frac{\sin (t)}{t}=1$
Q. 4 A probability density function on the interval $[a, 1]$ is given by $1 / x^{2}$ and outside this interval the value of the function is zero. The value of a is \qquad .

Ans. (0.5)
Given,

$$
\begin{aligned}
f(x) & =\frac{1}{x^{2}} \quad a \leq x \leq 1 \\
& =0 \quad \text { elsewhere }
\end{aligned}
$$

So $\int_{a}^{1} f(x)=1$

$$
\Rightarrow \quad \int_{a}^{1} \frac{1}{x^{2}}=1
$$

$$
\Rightarrow \quad\left[\frac{-1}{x}\right]_{a}^{1}=1
$$

$$
-\left[\frac{1}{1}-\frac{1}{a}\right]=1
$$

$$
\Rightarrow \quad \frac{1}{a}=2
$$

$$
\Rightarrow \quad a=\frac{1}{2}=0.5
$$

Q. $5 \quad$ Two eigenvalues of a 3×3 real matrix P are $(2+\sqrt{-1})$ and 3 . The determinant of P is \qquad —.

Ans. (15)
Two eigen values are $2+i$ and 3 of a 3×3 matrix. The third eigen value must be $2-i$

$$
\begin{array}{rlrl}
\text { Now } & & \Pi \lambda_{i} & =|A| \\
\Rightarrow & & |A| & =(2+i)(2-i) \times 3=\left(4-i^{2}\right) \times 3 \\
& & =5 \times 3=15
\end{array}
$$

Q. 6 Consider the Boolean operator \# with the following properties: $x \# 0=x, x \# 1=\bar{x}, x \# x=0$ and $x \# \bar{x}=1$. Then $x \# y$ is equivalent to
(a) $x \bar{y}+\bar{x} y$
(b) $x \bar{y}+\bar{x} \bar{y}$
(c) $\bar{x} y+x y$
(d) $x y+\bar{x} \bar{y}$

Ans. (a)

$$
\begin{aligned}
x \# 0 & =x
\end{aligned} \ldots 1
$$

Q. 7 The 16-bit 2's complement representation of an integer is 111111111111 0101; its decimal representation is \qquad .

Ans. (-11)
[1111 $111111110101 \leftarrow$ Given number in
No. is -ve $\quad 2$'s complement form
$0000000000001011 \leftarrow 2$'s of the number.
\therefore Decimal equivalent is -11 .
Q. 8 We want to design a synchronous counter that counts the sequence 0-1-0-2-03 and then repeats. The minimum number of J-K flip-flops required to implement this counter is \qquad .

Ans. (4)
Design synchronous counter using 4 flip-flops for the sequence

$$
\longrightarrow 0 \rightarrow 1 \rightarrow 4 \rightarrow 2 \rightarrow 8 \rightarrow 3 \square
$$

use J-K FF"s.
Read the output from FF1 and FFO only. So, that counter switching sequence is

$$
\square^{0} \rightarrow 1 \rightarrow 0 \rightarrow 2 \rightarrow 0 \rightarrow 3 \square
$$

Note: Don't read output from FF3 and FF2.
Q. 9 A processor can support a maximum memory of 4 GB , where the memory is wordaddressable (a word consists of two bytes). The size of the address bus of the processor is at least \qquad bits.

Ans.
(31)

Main memory size $=4 \mathrm{~GB}$
Word size $=2$ byte
1 word - 2 byte
? words - 4 GB
\therefore Total 2 G words are present.
So, address size $=31$ bits.
Q. 10 A queue is implemented using an array such that ENQUEUE and DEQUEUE operations are performed efficiently. Which one of the following statements is CORRECT (n refers to the number of items in the queue)?
(a) Both operations can be performed in $O(1)$ time
(b) At most one operation can be performed in $O(1)$ time but the worst case time for the other operation will be $\Omega(n)$
(c) The worst case time complexity for both operations will be $\Omega(n)$
(d) Worst case time complexity for both operations will be $\Omega(\log n)$

Ans. (a)
Implementing queue using array:

ENQUEUE Operation:

Check array full or not
if array is full stop
else enter the element in the end of array; which will take $\mathrm{O}(1)$ time.

DEQUEUE Operation:

Check array empty or not
if array is empty stop
else delete the element from front of array and increment the head value (pointer to the starting element of array).
which will take $\mathrm{O}(1)$ time.
So for array implementation of queue, ENQUEUE and DEQUEUE operation takes $\mathrm{O}(1)$ time.
Q. 11 Consider the following directed graph:

The number of different topological ordering of the vertices of the graph is \qquad .

Ans. (6)

Number of topological orders: 6

a	b	c	d	e	f
a	b	d	e	c	f
a	d	b	c	e	f
a	d	b	c	e	f
a	d	e	b	c	f
a	d	b	e	c	f

Q. 12 Consider the following C program.
void f (int, short);
void main()
\{
int $i=100$;
short $s=12$;
short * $p=\& \mathrm{~s}$;
\qquad ; $/ /$ call to $f()$
\}
Which one of the following expressions, when placed in the blank above, will NOT result in a type checking error?
(a) $f\left(s,{ }^{*} s\right)$
(b) $i=f(i, s)$
(c) $f\left(i,{ }^{*} s\right)$
(d) $f\left(i,{ }^{*} p\right)$

Ans. (d)
$f\left(s,{ }^{*} s\right)$ since there is no pointer variable define with *s. So this function will give type checking error.
$i=f(i, s)$ since function prototype is void in void f (int, short) i.e., f is accepting argument int type and short type and its return type should be integer because we store the output of function in variable i which is integer type. So there must be type casting into integer type but type casting is not present.

So this function will give type checking error.
$f\left(i,{ }^{*} s\right)$ since there is no pointer variable define with *s. So this function will give type checking error.
$f\left(i,{ }^{*} p\right)$ in this function to argument are pass one is int type and another is short type defined in the main function. So this function will not give type checking error.
Q. 13 The worst case running times of Insertion sort, Merge sort and Quick sort, respectively, are:
(a) $\Theta(n \log n), \Theta(n \log n)$, and $\Theta\left(n^{2}\right)$
(b) $\Theta\left(n^{2}\right), \Theta\left(n^{2}\right)$, and $\Theta(n \log n)$
(c) $\Theta\left(n^{2}\right), \Theta(n \log n)$, and $\Theta(n \log n)$
(d) $\Theta\left(n^{2}\right), \Theta(n \log n)$, and $\Theta\left(n^{2}\right)$

Ans. (d)
The worst case time complexity of algo given are:
Insertion sort $=\Theta\left(n^{2}\right)$
Merge sort $=\Theta(n \log n)$
Quick sort $=\Theta\left(n^{2}\right)$
Q. 14 Let G be a weighted connected undirected graph with distinct positive edge weights. If every edge weight is increased by the same value, then which of the following statements is/are TRUE?

P: Minimum spanning tree of G does not change
Q: Shortest path between any pair of vertices does not change
(a) P only
(b) Q only
(c) Neither P nor Q
(d) Both P and Q

Ans. (a)

Statement P: Since every edge weight is positive and we increase the value of every edge weight by same constant values. So minimum spanning tree of G does not change.
Statement Q: Taking an example:

First path from ' a ' to ' c ' via ' b ' have path value 3 . But here path can be change ' a ' to ' e ' direct since paths value is same but path can be change. So statement is wrong.
Q. 15 Consider the following C program.
\# include<stdio.h>
void mystery (int *ptra, int *ptrb)
\{ int *temp;
temp = ptrb;
ptrb = ptra;
ptra = temp;
\}
int main()
$\{\quad \operatorname{int} a=2016, b=0, c=4, d=42$;
mystery (\&a, \&b);
if $(a<c)$
mystery (\&c, \&);
mystery (\&a, \&d);
printf("\%d $\left.{ }^{\prime} n ", a\right)$;
\}
The output of the program is \qquad .

Ans. (2016)

$$
\begin{array}{|cc|}
\hline a & \begin{array}{c}
b \\
\hline 100
\end{array} \\
\begin{array}{c}
c \\
\hline 200 \\
\hline
\end{array} & \begin{array}{c}
d \\
\hline 300 \\
42 \\
\hline 400
\end{array} \\
\hline
\end{array}
$$

1. Mystery (\&a, \&); address of ' a ' and ' b ' is passed.
${ }^{*} \operatorname{ptr} a=\& a ; \quad * \operatorname{ptr} b=\& b ;$

2. temp $=\operatorname{ptr} b ; \Rightarrow$ temp $=200$
3. $\operatorname{ptr} b=\operatorname{ptr} a ; \Rightarrow \operatorname{ptr} b=100\}$ No effect on variable
4. $\operatorname{ptr} a=\operatorname{temp} ; \Rightarrow \operatorname{ptr} a=200 . ~ ' ~ a$ ' and ' b '
5. if $(2016<4)$ false

So, mystery (\&a, \&b);
*ptr $a=\& a ; \quad$ *ptr $b=\& d ;$

ptr a	ptr b		temp
100	300	100	400
1000	2000		3000

1. temp $=\operatorname{ptr} b ; \Rightarrow$ temp $=400$
2. $\operatorname{ptr} b=\operatorname{ptr} a ; \Rightarrow \operatorname{ptr} b=100\} \underset{' \alpha}{\text { No effect on variable }}$
3. $\operatorname{ptr} a=\operatorname{temp} ; \Rightarrow \operatorname{ptr} a=400\}$ ' a ' and ' d '
$\operatorname{Printf("a");~} \Rightarrow 2016$
So, output of above program is 2016 .
Q. 16 Which of the following languages is generated by the given grammar?

$$
S \rightarrow a S|b S|_{\varepsilon}
$$

(a) $\left\{a^{n} b^{m} \mid n, m \geq 0\right\}$
(b) $\left\{w \in\{a, b\}^{*} \mid w\right.$ has equal number of a 's and b 's $\}$
(c) $\left\{a^{n} \mid n \geq 0\right\} \cup\left\{b^{n} \mid n \geq 0\right\} \cup\left\{a^{n} b^{n} \mid n \geq 0\right\}$
(d) $\{a, b\}^{*}$

Ans. (d)
$G: S \rightarrow a S|b S| \varepsilon$
$L(G)=\{a, b\}^{*}$.
Q. 17 Which of the following decision problems are undecidable?
I. Given NFAs N_{1} and N_{2}, is $L\left(N_{1}\right) \cap L\left(N_{2}\right)=\Phi$?
II. Given a CFG $G=(N, \Sigma, P, S)$ and a string $x \in \Sigma^{*}$, does $x \in L(G)$?
III. Given CFGs G_{1} and G_{2}, is $L\left(G_{1}\right)=L\left(G_{2}\right)$?
IV. Given a TM M, is $L(M)=\Phi$?
(a) I and IV only
(b) II and III only
(c) III and IV only
(d) II and IV only

Ans. (c)
I. Disjointedness problem of regular - Decidable
II. Membership of CFL's - Decidable
III. Equivalence of CFL's - Undecidable
IV. Emptiness of RE language's - Undecidable

III and IV only is correct answer.
Q. 18 Which one of the following regular expressions represents the language: the set of all binary strings having two consecutive $0 s$ and two consecutive 1 ?
(a) $(0+1) * 0011(0+1) *+(0+1) * 1100(0+1) *$
(b) $(0+1)^{*}\left(00(0+1)^{*} 11+11(0+1) * 00\right)(0+1)^{*}$
(c) $(0+1)^{*} 00(0+1)^{*}+(0+1)^{*} 11(0+1) *$
(d) $00(0+1) * 11+11(0+1) * 00$

Ans. (b)
We wish to find regular expression "for all binary strings containing two consecutive 0's and two consecutive is"
Now, choice (a) cannot generate "00011"
Choice (b) is correct
Choice (c) " 00 " which does not belong to given language.
Choice (d) always ends with 11 or 00 and hence cannot generate " 001101 ".
Q. 19 Consider the following code segment.

$$
\begin{aligned}
& x=u-t ; \\
& y=x^{*} v ; \\
& x=y+w ; \\
& y=t-z ; \\
& y=x^{*} y ;
\end{aligned}
$$

The minimum number of total variables required to convert the above code segment to static single assignment form is \qquad .

Ans.
(7)
Q. 20 Consider an arbitrary set of CPU-bound processes with unequal CPU burst lengths submitted at the same time to a computer system. Which one of the following process scheduling algorithms would minimize the average waiting time in the ready queue?
(a) Shortest remaining time first
(b) Round-robin with time quantum less than the shortest CPU burst
(c) Uniform random
(d) Highest priority first with priority proportional to CPU burst length

Ans. (a)
To minimize the average waiting time, we need to select the shortest remaining time process first, because all are arriving at the same time, and they have unequal CPU burst times.
All other options will not minimize the waiting time. So, the answer is SRTF algorithm.
Q. 21 Which of the following is NOT a superkey in a relational schema with attributes V, W, X, Y, Z and primary key $V Y$?
(a) $V X Y Z$
(b) $V W X Z$
(c) $V W X Y$
(d) $V W X Y Z$

Ans. (b)
In $V W X Z$ no complete candidate key exists.
So, it is not super key
Q. 22 Which one of the following is NOT a part of the ACID properties of database transactions?
(a) Atomicity
(b) Consistency
(c) Isolation
(d) Deadlock-freedom

Ans. (d)
ACID stands for
A: Atomicity
C: Consistency
I: Isolation
D: Durability
So, deadlock-freedom is not the ACID property.
Q. 23 A database of research articles in a journal uses the following schema. (VOLUME, NUMBER, STARTPAGE, ENDPAGE, TITLE, YEAR, PRICE) The primary key is (VOLUME, NUMBER, STARTPAGE, ENDPAGE) and the following functional dependencies exist in the schema.
(VOLUME, NUMBER, STARTPAGE, ENDPAGE) \rightarrow TITLE
(VOLUME, NUMBER) \rightarrow YEAR
(VOLUME, NUMBER, STARTPAGE, ENDPAGE) \rightarrow PRICE
The database is redesigned to use the following schemas.
(VOLUME, NUMBER, STARTPAGE, ENDPAGE, TITLE, PRICE) (VOLUME, NUMBER, YEAR)
Which is the weakest normal form that the new database satisfies, but the old one does not?
(a) 1 NF
(b) 2 NF
(c) 3 NF
(d) BCNF

Ans. (b)
Journal (Volume, Number, Startpage, Endpage, Title, Year, Price)
Primary key: Volume, Number, Startpage, Endpage
FD's: Volume Number Startpage Endpage \rightarrow Title
Volume number \rightarrow Year
Volume Number, Startpage Endpage \rightarrow Price
Given relation 1NF but not 2NF. This DB is redesigned following schemas
R_{1} (Volume, Number Startpage Endpage Title Price) which has FD's
Volume Number, Startpage Endpage \rightarrow Title
Volume Number Startpage Endpage \rightarrow Price
Which is in BCNF.
R_{2} (Volume, Number, Year)
Volume Number \rightarrow Year
Which is also in BCNF.
Journal in 1NF
$\mathrm{R}_{1} \mathrm{R}_{2}$ in BCNF
Weakest NF which satisfy R_{1} and R_{2} and fails for journal is 2 NF .
End of Solution
Q. 24 Which one of the following protocols is NOT used to resolve one form of address to another one?
(a) DNS
(b) ARP
(c) DHCP
(d) RARP

Ans. (a)
DNS is used for mapping host name to IP address.
Q. 25 Which of the following is/are example(s) of statefull application layer protocols?
(i) HTTP
(ii) FTP
(iii) TCP
(iv) POP3
(a) (i) and (ii) only
(b) (ii) and (iii) only
(c) (ii) and (iv) only
(d) (iv) only

Ans. (c)
FTP has control and data connection it requires authorization. HTTP is stateless protocol. TCP is not application layer but it is statefull. POP3 is application protocol and it gets state with help of TCP.
Q. 26 The coefficient of x^{12} in $\left(x^{3}+x^{4}+x^{5}+x^{6}+\ldots\right)^{3}$ is \qquad .

Ans. (10)
We wish to find coefficient of x^{12} in $\left(x^{3}+x^{4}+x^{5}+\ldots\right)^{3}$

$$
\begin{aligned}
& =\left(x^{3}\left(1+x^{1}+x^{2}+\ldots\right)\right)^{3} \\
& =x^{9}\left(1+x+x^{2} \ldots . . .\right)^{3} \\
& =\frac{x^{9}}{(1-x)^{3}}=x^{9} \sum_{r=0}^{\infty} 3-1+{ }^{r} C_{r} X^{r} \\
& =x^{9} \sum_{r=0}^{\infty} r+{ }^{2} C_{r} X^{r}
\end{aligned}
$$

Now to make x^{12} we need to put $r=3$
So coefficient of x^{12} is ${ }^{3+2} C_{3}={ }^{5} C_{3}={ }^{5} C_{2}=10$
Q. 27 Consider the recurrence relation $a_{1}=8, a_{n}=6 n^{2}+2 n+a_{n-1}$. Let $a_{99}=K \times 10^{4}$. The value of K is \qquad .

Ans.
(198)

Given

$$
a_{n}=6 n^{2}+2 n+a_{n-1} \text { and } a_{1}=8
$$

We wish to find a_{99}
Now

$$
\begin{aligned}
a_{2}= & 6 \times 2^{2}+2 \times 2+a_{1} \\
a_{3}= & 6 \times 3^{2}+2 \times 3+a_{2} \\
= & 6 \times 3^{2}+2 \times 3+6 \times 2^{2}+2 \times 2+a_{1} \\
a_{99}= & 6 \times 99^{2}+2 \times 99+6 \times 98^{2}+2 \times 98 \ldots . \\
& \ldots \ldots .+6 \times 2^{2}+2 \times 2+\mathrm{a}_{1}
\end{aligned}
$$

Since

$$
a_{1}=8
$$

$$
a_{99}=6 \times 99^{2}+2 \times 99+6 \times 98^{2}+2 \times 98 \ldots
$$

$$
\ldots+6 \times 2^{2}+2 \times 2+8
$$

$$
=6 \times 99^{2}+2 \times 99+6 \times 98^{2}+2 \times 98 \ldots
$$

$$
\ldots 6 \times 2^{2}+2 \times 2+6 \times 1^{2}+2 \times 1
$$

$$
=6\left(1^{2}+2^{2}+3^{2} \ldots 99^{2}\right)+2 .(1+2+3 \ldots 99)
$$

$$
=6 \cdot \frac{(99(99+1)(2 \times 99+1))}{6}+2\left(\frac{99(99+1)}{2}\right)
$$

$$
=99 \times 100 \times 199+99 \times 100
$$

$$
=100 \times 99(199+1)
$$

$$
=100 \times 99 \times 200
$$

$$
=2 \times 99 \times 10^{4}
$$

$$
=198 \times 10^{4}
$$

so
then

$$
\text { if } a_{99}=K \times 10^{4}
$$

$$
K=198
$$

Q. 28 A function $f: \mathbb{N}^{+} \rightarrow \mathbb{N}^{+}$, defined on the set of positive integers \mathbb{N}^{+}, satisfies the following properties:

$$
\begin{array}{ll}
f(n)=f(n / 2) & \text { if } n \text { is even } \\
f(n)=f(n+5) & \text { if } n \text { is odd }
\end{array}
$$

Let $R=\{i \mid \exists j: f(j)=i\}$ be the set of distinct values that f takes. The maximum possible size of R is \qquad -.

Ans. (3)

$$
\begin{aligned}
& \mathrm{f}(\mathrm{n})=f\left(\frac{n}{2}\right) \text { if } n \text { is even } \\
& f(n)=f(n+5) \text { if } n \text { is odd }
\end{aligned}
$$

$f: N^{+} \rightarrow N^{+}$
Now

$$
\begin{aligned}
f(2) & =f\left(\frac{2}{2}\right)=f(1) \\
f(3) & =f(3+j)=f(8)=f\left(\frac{8}{2}\right)=f(4) \\
& =f\left(\frac{4}{2}\right)=f(2)=(1)
\end{aligned}
$$

So

$$
f(1)=f(2)=f(3)=f(4)=f(8)
$$

Now let us find $f(5)=f(5+5)=f(10)=f\left(\frac{10}{2}\right)=f(5)$ so $f(5)=f(10)$
Now let us find $f(9)$

$$
\begin{aligned}
f(9) & =f(9+5)=f(14)=f\left(\frac{14}{2}\right)=f(7) \\
& =f(7+5)=f(12)=f\left(\frac{12}{2}\right)=f(6)
\end{aligned}
$$

So

$$
f(9)=f(7)=f(6)
$$

For $\quad n>10$, it will be equal to one of $f(1), f(2) \ldots f(10)$
So the maximum no. of distinct values f takes is only 3 .
First is $f(1)=f(2)=f(3)=f(4)=f(8)$
Second is $f(5)=f(10)$
Third is $f(6)=f(7)=f(9)$
All other n values will give only one of these three values.
Q. 29 Consider the following experiment.

Step 1. Flip a fair coin twice.
Step 2. If the outcomes are (TAILS, HEADS) then output Y and stop.
Step 3. If the outcomes are either (HEADS, HEADS) or (HEADS, TAILS), then output N and stop.
Step 4. If the outcomes are (TAILS, TAILS), then go to Step 1.
The probability that the output of the experiment is Y is \qquad (up to two decimal places).

Ans.
(0.33)

The tree diagram for the processes is given above
The desired output is Y.
Now by rule of total probability

$$
p(\text { output }=y)=0.5 \times 0.5+0.5 \times 0.5 \times 0.5 \times 0.5+\ldots . .
$$

Infinite geometric series with

$$
a=0.5 \times 0.5
$$

and

$$
r=0.5 \times 0.5
$$

so $\quad p($ output $=y)=\frac{0.5 \times 0.5}{1-0.5 \times 0.5}=\frac{0.25}{0.75}=\frac{1}{3}=0.33 \quad$ (upto 2 diagonal places)
Q. 30 Consider the two cascaded 2-to-1 multiplexers as shown in the figure.

The minimal sum of products form of the output X is
(a) $\bar{P} \bar{Q}+P Q R$
(b) $\bar{P} Q+Q R$
(c) $P Q+\bar{P} \bar{Q} \bar{R}$
(d) $\bar{Q} \bar{R}+P Q R$

Ans. (d)
MUX-1 output $\Rightarrow \bar{P}(0)+P(R)=P R$
MUX-2 output $\Rightarrow X=\bar{Q}(\bar{R})+Q(P R)=\bar{Q} \bar{R}+P Q R$
Q. 31 The size of the data count register of a DMA controller is 16 bits. The processor needs to transfer a file of 29,154 kilobytes from disk to main memory. The memory is byte addressable. The minimum number of times the DMA controller needs to get the control of the system bus from the processor to transfer the file from the disk to main memory is \qquad .

Ans. (456)
Data count register $=16$ bits.
So, count value $=2^{16}=64 \mathrm{~K}$ bytes
One time control, transfer - 64 K bytes
Number of controls to transfer - 29154 K bytes
456 times system BUS control is required.
Q. 32 The stage delays in a 4-stage pipeline are 800, 500, 400 and 300 picoseconds. The first stage (with delay 800 picoseconds) is replaced with a functionally equivalent design involving two stages with respective delays 600 and 350 picoseconds. The throughput increase of the pipeline is \qquad percent.

Ans. (33.28)
\mathbf{P}_{1} : 4-stage

$$
t_{p}=\operatorname{Max} \text { (stage delay) }=800 \mathrm{ps}
$$

1 instruction - 800 ps
? number of instruction - 1 sec
$T P_{R}=1250$ instruction/sec
$\mathbf{P}_{2}: 5$-stage $\quad t_{p}=600 \mathrm{ps}$
1 instruction - 600 ps
? number of instruction - 1 sec
$T P_{P 2}=1666$ instruction/sec
$1250-100 \%$ (old)
(1666-1250) - ? (New)
$\Rightarrow \quad \frac{416}{1250}=0.3328$
i.e., 33.28%
Q. 33 Consider a carry lookahead adder for adding two n-bit integers, built using gates of fan-in at most two. The time to perform addition using this adder is
(a) $\Theta(1)$
(b) $\Theta(\log (n))$
(c) $\Theta(\sqrt{n})$
(d) $\Theta(n)$

Ans. (b)
The gates to be used in CLA adder with the fan-in at the most ' 2 '.
\therefore Time to perform addition using this adder is $\Theta(\log (n))$.
Q. 34 The following function computes the maximum value contained in an integer array $p[$] of size $n(n>=1)$.
int max(int * p, int n)
\{ $\quad \operatorname{int} a=0, b=n-1$;
while (\qquad)
\{

$$
\text { if }(p[a]<=p[b])
$$

 \{
 \(a=a+1 ;\)
 \}
 else
 \{
 \(b=b-1 ;\)
 \}
 \}
 return \(p[a]\);
 \}

The missing loop condition is
(a) $a!=n$
(b) $b!=0$
(c) $b>(a+1)$
(d) $b!=a$

Ans. (d)
Option (a) is fail for descending array. Since n value is not decreament in program.

Option (b) is fail for ascending array. Since value of ' a ' is increment every time and in while condition we check for value of ' b '. So it is incorrect.
Option (c) is fail for input 567123 . Since which pointer a is pointing to 6 and ' b ' will pointing to 7 i.e., ' a ' and ' b ' are adjacent to each other. Then while condition $b>(a+1)$ is fail and it return 6 is maximum value which is incorrect.
Option (d) at the end of the program pointer ' a ' and ' b ' pointed to same element then only while condition is false and return the maximum value of array.
Q. 35 What will be the output of the following C program?
void count(int n)
\{ \quad static int $d=1$;
printf("\% $\%$ ", n);
$\operatorname{print} f\left({ }^{(} \% d ", d\right)$;
$d++$;
if ($n>1$) count ($n-1$);
printf("\% ${ }^{\prime \prime}$ ", d);
\}
void main()
\{
count (3);
\}
(a) 312213444
(b) 312111222
(c) 3122134
(d) 3121112

Ans. (a)

	D $\square^{3} 3^{4}$			
${ }^{\text {count (3) }}$				
1. $\operatorname{Printf}(n)=3$				
2. $\operatorname{Print} f(d)=1$				
if $(3>1)$ true				
9. $\operatorname{Print} f(d)=4$	$n \square$			
	4. $\operatorname{Print} f(d)=2$ $d++$; \qquad			
	$\begin{aligned} \text { if }(2>1) \text { true } \\ \text { count }(1) \\ \text { 8. } \operatorname{Printf}(d)=4 \end{aligned}$	$\square 1$		
		5. $\operatorname{Print} f(n)=1$		
		6. $\operatorname{Print} t($ f $($) $=3$		
		$-{ }_{\text {if }}\left(1+\right.$; ${ }^{\text {d }}$) false		
		if $(1>1)$ false count (1)		
		$\operatorname{rint} f(d)=$		

So output will be printed in serial order given in solution i.e., 312213444 .
Q. 36 What will be the output of the following pseudo-code when parameters are passed by reference and dynamic scoping is assumed?

```
a=3;
void n(x)
{
    x=x*a; print (x);
}
void m(y)
{ a=1;a=y-a;n(a);
    print(a);
}
void main()
{
    m(a);
}
```

(a) 6,2
(b) 6,6
(c) 4,2
(d) 4,4

Ans. (c)
$a \longdiv { p \not 2 }$ globaly initialize.

1. $m(3)$

2. $a=1$ since not declared here. So free variable.
3. $a=3-1=2$

$$
\begin{aligned}
& n(a) ; \\
& \begin{array}{l}
n(2) \\
x \sqrt{2} \\
x=x * a ; \\
=2 * 2 \text { (here a is taken from global variable) } \\
=4 \\
\operatorname{Printf(4);~}=4
\end{array}
\end{aligned}
$$

3. $\operatorname{Print} f(a)=2$ global value of ' a '

So answer will be 4, 2 .
Q. 37 An operator delete (i) for a binary heap data structure is to be designed to delete the item in the i-th node. Assume that the heap is implemented in an array and i refers to the i-th index of the array. If the heap tree has depth d (number of edges on the path from the root to the farthest leaf), then what is the time complexity to re-fix the heap efficiently after the removal of the element?
(a) $O(1)$
(b) $O(d)$ but not $O(1)$
(c) $O\left(2^{d}\right)$ but not $O(d)$
(d) $O\left(d 2^{d}\right)$ but not $O(2 d)$

Ans. (b)
Heap is implemented using array. If ' i ' is parent element then ' $2 i$ ' is left child and ' $2 i+1$ ' is right child.
So if an element is delete from last level of the heap then it will take $O(1)$ time. Since element can be deleted from any level of heap tree in worst case root element is deleted then at every level one element is exchange.

Example:

Minimum $O(d)$ time will take if a element is deleted in heap tree but not $O(1)$.
Q. 38 Consider the weighted undirected graph given by with 4 vertices, where the weight of edge $\{i, j\}$ is the entry $W_{i j}$ in the matrix W.

$$
W=\left[\begin{array}{llll}
0 & 2 & 8 & 5 \\
2 & 0 & 5 & 8 \\
8 & 5 & 0 & x \\
5 & 8 & x & 0
\end{array}\right]
$$

The largest possible integer value of x, for which at least one shortest path between some pair of vertices will contain the edge with weight x is \qquad _.

Ans.
(11)

End of Solution
Q. 39 Let G be a complete undirected graph on 4 vertices, having 6 edges with weights being $1,2,3,4,5$, and 6 . The maximum possible weight that a minimum weight spanning tree of G can have is \qquad .

Ans. (7)
Since graph will be complete graph contain 4 vertex and 6 edges with weight $1,2,3,4,5,6$.

If we consider edge weights in such order, that form the cycle, then we have to choose two minimum we choose minimum value i.e., 4. So MST will be

So max weight will be $1+2+4=7$.
Q. $40 \quad G=(V, E)$ is an undirected simple graph in which each edge has a distinct weight, and e is a particular edge of G. Which of the following statements about the minimum spanning trees (MSTS) of G is/are TRUE?
I. If e is the lightest edge of some cycle in G, then every MST of G includes e.
II. If e is the heaviest edge of some cycle in G, then every MST of G excludes e.
(a) I only
(b) II only
(c) both I and II
(d) neither I nor II

Ans. (c)
Q. 41 Let Q denote a queue containing sixteen numbers and S be an empty stack. Head (Q) returns the element at the head of the queue Q without removing it from Q. Similarly Top(S) returns the element at the top of S without removing it from S . Consider the algorithm given below.
while Q is not Empty do
if S is Empty OR Top $(S) \leq \operatorname{Head}(Q)$ then
$x:=$ Dequeue (Q);
Push (S, x);
else
$x:=\operatorname{Pop}(S) ;$
Enqueue (Q, x);
end
end
The maximum possible number of iterations of the while loop in the algorithm is
\qquad _.

Ans.
(256)

The minimum number of iterations of the while loop in algorithm when use take queue contain element in ascending order i.e., $1,2,3,4, \ldots, 16$ is 16 . The maximum number of iterations of while loop in algorithm when we take queue containing elements in descending order i.e., $16,15,14, \ldots, 1$.
First 16 will push into stack and then enqueue it in the end of the queue. This process do till we get 1 as head element. When head point to 1 then simple push the 1 in stack. In this manner we have to push all element in stack in assending order, until queue is empty it will take 256 of iterations.

Example:

Sequence of operation with while loop execution.

1. dequeue (3)
push (3)
2. pop (2)
enqueue (2)
3. pop (3)
enqueue (3)
4. pop (3)
enqueue (3)
5. dequeue (1)
push (1)
6. dequeue (2)
push (2)
7. dequeue (2)
push (2)
8. dequeue (3)
push (3)
9. dequeue (3)
push (3)

So for $\mathrm{n}=3$ it takes $3 \times 3=9$ iterations of while loop in algorithm. So, for $n=16$ it will take $16 \times 16=256$ iterations of while loop.
Q. 42 Consider the following context-free grammars:
$\mathrm{G}_{1}: S \rightarrow a S|B, B \rightarrow b| b B$
$\mathrm{G}_{2}: S \rightarrow a A|b B, A \rightarrow a A| B|\varepsilon, B \rightarrow b B|_{\varepsilon}$
Which one of the following pairs of languages is generated by G_{1} and G_{2}, respectively?
(a) $\left\{a^{m} b^{n} \mid m>0\right.$ or $\left.n>0\right\}$ and $\left\{a^{m} b^{n} \mid m>0\right.$ and $\left.n>0\right\}$
(b) $\left\{a^{m} b^{n} \mid m>0\right.$ and $\left.n>0\right\}$ and $\left\{a^{m} b^{n} \mid m>0\right.$ or $\left.n \geq 0\right\}$
(c) $\left\{a^{m} b^{n} \mid m \geq 0\right.$ or $\left.n>0\right\}$ and $\left\{a^{m} b^{n} \mid m>0\right.$ and $\left.n>0\right\}$
(d) $\left\{a^{m} b^{n} \mid m \geq 0\right.$ and $\left.\mathrm{n}>0\right\}$ and $\left\{a^{m} b^{n} \mid m>0\right.$ or $\left.n>0\right\}$

Ans. (d)

$$
\begin{aligned}
G_{1}: & S & \rightarrow a S \mid B \\
& B & \rightarrow b \mid b B \\
G_{2}: & & \rightarrow a A \mid b B \\
& & \rightarrow a A|B| \varepsilon \\
& B & \rightarrow b B \mid \varepsilon
\end{aligned}
$$

G:

$$
B \rightarrow b \mid b B \Rightarrow B \rightarrow b^{+}
$$

Now substitute in $S \rightarrow a S \mid B$
We get $S \rightarrow a S \mid b^{+} \Rightarrow S \rightarrow a^{*} b^{+}$
So, $L\left(G_{1}\right)=\left\{a^{m} b^{n} \mid m \geq 0\right.$ and $\left.n>0\right\}$
$\left(G_{2}\right)=B \rightarrow b B \mid \varepsilon \Rightarrow B \rightarrow b^{*}$
Substitute in $A \rightarrow a A|B| \varepsilon \Rightarrow A \rightarrow a A\left|b^{*}\right| \varepsilon \Rightarrow A \rightarrow a A \mid b^{*}$
$\Rightarrow A \rightarrow a^{*} b^{*}$
Now substitue A and B in $S \rightarrow a A \mid b B$
$\Rightarrow S \rightarrow a a^{*} b^{*} \mid b b^{*}$
$S \rightarrow a a^{*} b^{*}+b b^{*}$
So

$$
L\left(h_{2}\right)=\left\{a^{m} b^{n} \mid m>0 \text { or } n>0\right\}
$$

So correct answer is choice (d).
End of Solution
Q. 43 Consider the transition diagram of a PDA given below with input alphabet $E=\{a, b\}$ and stack alphabet $r=\{X, Z\} . Z$ is the initial stack symbol. Let L denote the language accepted by the PDA.

Which one of the following is TRUE?
(a) $L=\left\{a^{n} b^{n} \mid n \geq 0\right\}$ and is not accepted by any finite automata
(b) $L=\left\{a^{n} \mid n \geq 0\right\} \cup\left\{a^{n} b^{n} \mid n \geq 0\right\}$ and is not accepted by any deterministic PDA
(c) L is not accepted by any Turing machine that halts on every input
(d) $L=\left\{a^{n} \mid n \geq 0\right\} \cup\left\{a^{n} b^{n} \mid n \geq 0\right\}$ and is deterministic context-free

Ans. (a)
The first state accepts only null string. Only a's will not be accepted since on first state ε, X will be dead reject.
The third state accept is $\left\{a^{n} b^{n} \mid \mathrm{n} \geq 1\right\}$
So

$$
\begin{aligned}
L & =\{\varepsilon\} \cup\left\{a^{n} b^{n} \geq 1\right\} \\
& =\left\{a^{n} b^{n} \mid \mathrm{n} \geq 0\right\}
\end{aligned}
$$

Clearly this is a non-regular CFL and hence not accepted by any FA.

End of Solution

Q. 44 Let X be a recursive language and Y be a recursively enumerable but not recursive language. Let W and Z be two languages such that Y reduces to W, and Z reduces to X (reduction means the standard many-one reduction). Which one of the following statements is TRUE?
(a) W can be recursively enumerable and Z is recursive.
(b) W can be recursive and Z is recursively enumerable.
(c) W is not recursively enumerable and Z is recursive.
(d) W is not recursively enumerable and Z is not recursive.

Ans. (c)
$X \rightarrow$ REC
$Y \rightarrow$ RE but not REC
$\bar{Y} \leq W$ and $Z \leq \bar{X}$
Now we know that RE, REC both go in reverse direction on reduction.
Now, if Y is RE but not REC, then \bar{Y} is not RE.
Now $\bar{Y} \leq \mathrm{W}$
If W is $\mathrm{RE} \Rightarrow \bar{Y}$ is RF
Composition is $\overline{\mathrm{Y}}$ is not $\mathrm{RE} \Rightarrow W$ is not RE
Now $Z \leq \bar{X}$
If X is REC, \bar{X} is also REC
So \bar{X} REC $\Rightarrow Z$ is REC
So W is not RE and Z is REC.
Choice (c) is correct.
Q. 45 The attributes of three arithmetic operators in some programming language are given below.

Operator	Precedence	Associativity	Arity
+	High	Left	Binary
-	Medium	Right	Binary
$*$	Low	Left	Binary

The value of the expression $2-5+1-7 * 3$ in this language is \qquad .

Ans. (9)
Since given expression in infix expression. So we use operator stack.
$2-5+1-7$ * 3

So, $\quad 2-(6-7) \quad \therefore$ '-' right associative.

$$
2-(-1)=3
$$

String finish so pop '*’

So, $3 * 3=9$.
So, $2-5+1-7 * 3$ evaluates to 9 .
Q. 46 Consider the following Syntax Directed Translation Scheme (SDTS), with nonterminals $\{S, A\}$ and terminals $\{a, b\}$.

$$
\begin{array}{lr}
S \rightarrow a A & \text { \{print 1\} } \\
S \rightarrow a & \text { \{print 2\} } \\
A \rightarrow S b & \text { \{print 3\} }
\end{array}
$$

Using the above SDTS, the output printed by a bottom-up parser, for the input aab is:
(a) 132
(b) 223
(c) 231
(d) syntax error

Ans. (c)
Input is ' $a a b$ '
So tree for given input.

So output will be 2,3 and 1 because printed order will be $1,2,3$.
So output: 231
Q. 47 Consider a computer system with 40-bit virtual addressing and page size of sixteen kilobytes. If the computer system has a one-level page table per process and each page table entry requires 48 bits, then the size of the per-process page table is \qquad megabytes.

Ans. (384)
Page table size $=$ Number of entries in page table \times Page table entry size
$=\left(\frac{2^{40}}{2^{14}}\right) \times 48$ bits $=2^{26} \times 6$ bytes
$=64 \mathrm{M} \times 6 \mathrm{~B}=384 \mathrm{MB}$
Q. 48 Consider a disk queue with requests for I/O to blocks on cylinders 47, 38, 121, 191, 87, 11, 92, 10. The C-LOOK scheduling algorithm is used. The head is initially at cylinder number 63 , moving towards larger cylinder numbers on its servicing pass. The cylinders are numbered from 0 to 199. The total head movement (in number of cylinders) incurred while servicing these requests is \qquad .

Ans. (346)

$(84-63)+(92-87)+(121-92)+(191-121)+(191-10)+(11-10)+(38$
$-11)+(47-38)$
$=24+5+29+70+181+1+27+9=346$
Q. 49 Consider a computer system with ten physical page frames. The system is provided with an access sequence $\left(a_{1}, a_{2}, \ldots, a_{20}, a_{1}, a_{2}, \ldots, a_{20}\right)$, where each a_{i} is a distinct virtual page number. The difference in the number of page faults between the last-in-first-out page replacement policy and the optimal page replacement policy is \qquad -.

Ans. (1)
This question is little tricks, but not difficult. You can solve the problem by taking smaller example with smaller values.

Example: 1, 2, 3, 4, 1, 2, 3, 4 with ' 2 ' frames.
LIFO: 1, 2, 3, 4, 1, 2, 3, 4

	$\not 2$	$\not 2$	$\not A$	$\not A$	\mathscr{A}	3	4			
1	1	1	1	1	1	1	1			
	F	F	F	F					F	F

Total page faults $=7$
Optimal: 1, 2, 3, 4, 1, 2, 3, 4

	$\not 2$	$\not \partial$	4	4	4	4	4		
1	1	1	1	$\not \subset$	\mathscr{A}	3	3		
F	F	F	F	F					F

Total page faults $=6$
$7-6=1$.
Q. 50 Consider the following proposed solution for the critical section problem. There are n processes: $P_{0} \ldots P_{n-1}$. In the code, function pmax returns an integer not smaller than any of its arguments. For all $i, t[i]$ is initialized to zero.
Code for P_{i} :
do
\{
$c[i]=1 ; t[i]=\operatorname{pmax}(t[0], \ldots, t[n-1])+1 ;$
for every $j \neq i$ in $\{0, \ldots, n-1\}$
\{ while (c[j]);
while $(t[j]$! $=0$ \&\& $t[j]<=t[i])$;
\}
Critical Section; $t[i]=0$;
Remainder Section;
\} while (true);

Which one of the following is TRUE about the above solution?
(a) At most one process can be in the critical section at any time
(b) The bounded wait condition is satisfied
(c) The progress condition is satisfied
(d) It cannot cause a deadlock

Ans. (a)
It satisfies the mutual exclusion, so only one process can be in the critical section at any time.
Q. 51 Consider the following two phase locking protocol. Suppose a transaction T accesses (for read or write operations), a certain set of objects $\left\{O_{1}, \ldots, O_{k}\right\}$. This is done in the following manner:

Step 1. T acquires exclusive locks to O_{1}, \ldots, O_{k} in increasing order of their addresses.
Step 2. The required operations are performed.
Step 3. All locks are released.
This protocol will
(a) guarantee serializability and deadlock-freedom
(b) guarantee neither serializability nor deadlock-freedom
(c) guarantee serializability but not deadlock-freedom
(d) guarantee deadlock-freedom but not serializability

Ans. (a)
2PL over objects $O_{1} \ldots O_{k}$
Step-1: T acquires exclusive lock to $O_{1} \ldots O_{k}$ in increasing order of their address.

Step-2: The required operations are performed.
Step-3: All locks are released.
Because of 2PL it guarantee serializability and objects locks in increasing order of address and all objects locks before read/write which avoids deadlock.
Q. 52 Consider that B wants to send a message m that is digitally signed to A. Let the pair of private and public keys for A and B be denoted by K_{x}^{-}and K_{x}^{+}for $x=A, B$, respectively. Let $K_{x}(m)$ represent the operation of encrypting m with a key K_{x} and $H(m)$ represent the message digest. Which one of the following indicates the CORRECT way of sending the message m along with the digital signature to A ?
(a) $\left\{m, K_{B}{ }^{+}(H(m))\right\}$
(b) $\left\{m, K_{B}{ }^{-}(H(m))\right\}$
(c) $\left\{m, K_{A}^{-}(H(m))\right\}$
(d) $\left\{m, K_{A}{ }^{+}(m)\right\}$

Ans. (b)
In digital signature Message is digested represented by $H(m)$ and encrypted with sender's private key i.e., $K_{B}^{-}(H(m))$ to create sign and send it along with the original message m.
So, the correct answer is $\left\{m, K_{B}{ }^{-}(H(m))\right\}$.
Q. 53 An IP datagram of size 1000 bytes arrives at a router. The router has to forward this packet on a link whose MTU (maximum transmission unit) is 100 bytes. Assume that the size of the IP header is 20 bytes. The number of fragments that the IP datagram will be divided into for transmission is \qquad .

Ans. (13)
MTU is 100 bytes, IP header is 20 bytes, IP datagram is 1000 bytes.
So, number of fragments are 13 .
Q. 54 For a host machine that uses the token bucket algorithm for congestion control, the token bucket has a capacity of 1 megabyte and the maximum output rate is 20 megabytes per second. Tokens arrive at a rate to sustain output at a rate of 10 megabytes per second. The token bucket is currently full and the machine needs to send 12 megabytes of data.
The minimum time required to transmit the data is \qquad seconds.

Ans. (1.1)
Time taken to transmit 1 MB when output rate is 20 MBps , capacity is 1 MB and token arrival rate is 10 MBps is

$$
\begin{aligned}
C+\rho S & =\mathrm{MS} \\
1 \mathrm{MB}+(10 \mathrm{MBps}) \times S & \Leftarrow(20 \mathrm{MBps}) \times S
\end{aligned}
$$

$$
S=\frac{1 \mathrm{MB}}{(20-10) \mathrm{MBps}}
$$

$$
S=\frac{1 \mathrm{MB}}{10 \mathrm{MBps}}=0.1 \mathrm{sec}
$$

In 0.1 sec data transmit $=0.1 \times$ Output rate

$$
=0.1 \times 20 \mathrm{MBps}=2 \mathrm{MB}
$$

Remaining data $=(12 \mathrm{MB}-2 \mathrm{MB})=10 \mathrm{MB}$
So to transmit 1 MB takes 0.1 sec

$$
\begin{aligned}
\text { then for } 10 \mathrm{MB} & =10 \times 0.1 \mathrm{sec}=1 \mathrm{sec} \\
\text { Total time } & =(0.1+1) \mathrm{sec}=1.1 \mathrm{sec}
\end{aligned}
$$

Q. 55 A sender uses the Stop-and-Wait ARQ protocol for reliable transmission of frames. Frames are of size 1000 bytes and the transmission rate at the sender is 80 Kbps $(1 \mathrm{Kbps}=1000 \mathrm{bits} /$ second $)$. Size of an acknowledgment is 100 bytes and the transmission rate at the receiver is 8 Kbps . The one-way propagation delay is 100 milliseconds.

Assuming no frame is lost, the sender throughput is \qquad bytes/second.

Ans. (2500)

$$
\begin{aligned}
\text { Sender throughput } & =\frac{\text { Data }}{\text { Total time }} \\
& =\frac{1000 \text { bytes }}{0.1+0.1+0.1+0.1}=2500 \mathrm{bytes} / \mathrm{sec}
\end{aligned}
$$

$\mathcal{N a t i o n a l}$ Scholarship Test

 for GATE \& ESE 2017 aspirants Scholarship upto 100\% in classroom coursesThousands of talented engineering graduates dream about prestigious engineering service examination, public sectors, IITs etc. But due to unfavorable economic conditions, these students are unable to take coaching guidance. Therefore MADE EASY has taken a initiative to acknowledge the talented in the form of scholarships. MADE EASY will provide scholarship worth more than 1.25 crores for those students who wish to enroll classroom courses for the session 2016-17.

Category	Scholarship\% in Tuition fee
A	100%
B	75%
C	50%
D	25%
E	10%

Scholarship will vary from 10% to 100%
of tuition fee, based on merit list.

Scholarship
 Worthmos than 1.25 Crores

Scholarship Test
will be conducted in
42 cties
Delhi, Noida, Hyderabad, Lucknow, Bhopal, Jaipur Indore, Pune, Bhubaneswar, Kolkata, Patna, Bhilai, Bangalore, Chennai, Nagpur, Chandigarh, Kanpur, Ranchi, Vijayawada, Dehradun, Kochi, Vishakhapatnam

Test Dates

28 ${ }^{\text {th }}$ Feb, 2016
$06^{\text {th }}$ Mar, 2016
Candidate can appear in any ONE test only
Test Pattern (Objective Type)
Basic Engineering 50 Q
Engineering Mathematics 20 Q
Reasoning \& Aptitude 20 Q
General English 10 Q
100 marks 100 questions 2 hours

Test Syllahus : Basic Engineering

Civil
Strength of materials, Design of Concrete structures, Soil mechanics and Foundation Engg, Environmental Engg, Fluid Mechanics \& Highway Engg.

Mechanical
Basic thermo dynamics, Heat \& Mass transfer, Fluid Mechanics, Industrial Engg, Production Engg and Theory of Machines.

Electrical Network theory, Control System, Electrical machines, Power systems, electrical Measurements, Analog electronics.

Electronics
Network theory, Control System, electronic devices \&Circuits Analog electronics, Digital electronics and Communication systems.

Computer Science
TOC, Algorithms and Programming Methodology, Operating System, DBMS, Computer Networks, Compiler design

- Log on to www.madeeasy.in
- Fill National Scholarship Test online registration form.

PROCEDURE
for
Registration

- Computer generated Admit Card will be mailed to your respective e-mail id.
- Venue \& timing will be mentioned on Admit Card.
- Candidate should produce Admit Card along with photo id proof to enter the examination hall.

Important Dates

Last date to register online
20-Feb-2016
National Scholarship Test-1
28-Feb-2016
National Scholarship Test-2
06-Mar-2016
Results
15-Mar-2016

MRDE ERS논
India's Best Institute for IES, GATE \& PSUs

\author{

- Best Faculty • Best Study Material • Best Results
}

Features of Classroom Gourses

- Experienced Faculty
- GATE/ESE Test Series
- Updated Books and Reading References
- Regular classroom tests followed by discussions
- Doubt clearing sessions
- Interview Guidance Program
- Coverage of syllabus before GATE/ESE exams.
- Orientation sessions for GATE/ESE

ADMISSIONS OPEN for Session 2016-17 at all centre of MADE EASY

44-A/1, Kalu Sarai, Near Hauz Khas Metro Station, New Delhi-16; E-mail : infodelhi@madeeasy.in Ph.: 011-45124612, 09958995830

Abstract

Noida D-28 Sector-63 Noida, Uttar Pradesh; E-mail: infonoida@madeeasy.in Ph.: 0120-6524612, 08860378009

Iucknow
B1/67, Sector P, Aliganj, Lucknow; E-mail : infolucknow@madeeasy.in Ph.: 09919111168,08400029422

Jaipur AB-559, Kings Road, Nirman Nagar, Jaipur, Rajasthan; E-mail : infojaipur@madeeasy.in Ph.: 0141-4024612, 09166811228

Bhopal
Plot No. 46, Zone-2 M.P. Nagar, Bhopal (Madhya Pradesh)- 462021; E-mail : infobhopal@madeeasy.in Ph.: 0755-4004612, 08120035652

Indore

Gemini Mall, PU3, Opp. Orbit Mall, A.B. Road, Vijay Nagar, Indore; E-mail : infoindore@madeeasy.in Ph.: 0731-4029612, 07566669612

Pune

II Floor, Business Bay, Plot No. 84, Near R.T.O. Shivaji Nagar, Pune; E-mail : infopune@madeeasy.in Ph.: 020-26058612, 09168884343

Hyderahad
5-1-744, Bank Street, Koti, Hyderabad-95; E-mail : infohyderabad@madeeasy.in Ph.: 040-24652324, 09160002324

Bhubancswar Plot No-1441, CRPF Square, Opposite to IOCL Petrol Pump; E-mail : infobhubaneswar@madeeasy.in Ph.: 0674-6999888, 9040999888

Kolkata

755, Anandapur Next to Fortis Hospital Off-EM Bypass Kolkata; E-mail : infokolkata@madeeasy.in Ph.: 033-68888880, 08282888880

Patia

"MADE EASY is the only institute which has consistently produced toppers in ESE \& GATE" www.madeeasy.in

mRDE ERSU

