1. Define Network?

A network is a set of devices connected by physical media links. A network is recursively is a connection of two or more nodes by a physical link or two or more networks connected by one or more nodes.

2. What is a Link?

At the lowest level, a network can consist of two or more computers directly connected by some physical medium such as coaxial cable or optical fiber. Such a physical medium is called as Link.

3. What is a node?

A network can consist of two or more computers directly connected by some physical medium such as coaxial cable or optical fiber. Such a physical medium is called as Links and the computer it connects is called as Nodes.

4. What is a gateway or Router?

A node that is connected to two or more networks is commonly called as router or Gateway. It generally forwards message from one network to another.

5. What is point-point link?

If the physical links are limited to a pair of nodes it is said to be point-point link.

6. What is Multiple Access?

If the physical links are shared by more than two nodes, it is said to be Multiple Access.

7. What are the advantages of Distributed Processing?

- a. Security/Encapsulation
- b. Distributed database
- c. Faster Problem solving
- d. Security through redundancy
- e. Collaborative Processing

8. What are the criteria necessary for an effective and efficient network?

a. Performance

It can be measured in many ways, including transmit time and response time. b. Reliability

It is measured by frequency of failure, the time it takes a link to recover from a failure, and the network's robustness.

c. Security

Security issues includes protecting data from unauthorized access and virues.

9. Name the factors that affect the performance of the network?

- a. Number of Users
- b. Type of transmission medium

c. Hardware

d. Software

10. Name the factors that affect the reliability of the network?

- a. Frequency of failure
- b. Recovery time of a network after a failure

11. Name the factors that affect the security of the network?

- a. Unauthorized Access
- b. Viruses

12. What is Protocol?

A protocol is a set of rules that govern all aspects of information communication.

13. What are the key elements of protocols?

The key elements of protocols are

a. Syntax

It refers to the structure or format of the data, that is the order in which they are presented.

b. Semantics

It refers to the meaning of each section of bits.

c. Timing

Timing refers to two characteristics: When data should be sent and how fast they can be sent.

14. What are the key design issues of a computer Network?

- a. Connectivity
- b. Cost-effective Resource Sharing
- c. Support for common Services
- d. Performance

15. Define Bandwidth and Latency?

Network performance is measured in Bandwidth (throughput) and Latency (Delay). Bandwidth of a network is given by the number of bits that can be transmitted over the network in a certain period of time. Latency corresponds to how long it t5akes a message to travel from one end off a network to the other. It is strictly measured in terms of time.

16. Define Routing?

The process of determining systematically hoe to forward messages toward the destination nodes based on its address is called routing.

17. What is a peer-peer process?

The processes on each machine that communicate at a given layer are called peer-peer process.

18. When a switch is said to be congested?

It is possible that a switch receives packets faster than the shared link can accommodate and stores in its memory, for an extended period of time, then the switch will eventually run out of buffer space, and some packets will have to be dropped and in this state is said to congested state.

19. What is semantic gap?

Defining a useful channel involves both understanding the applications requirements and recognizing the limitations of the underlying technology. The gap between what applications expects and what the underlying technology can provide is called semantic gap.

20. What is Round Trip Time?

The duration of time it takes to send a message from one end of a network to the other and back, is called RTT.

21. Define the terms Unicasting, Multiccasting and Broadcasting?

If the message is sent from a source to a single destination node, it is called Unicasting. If the message is sent to some subset of other nodes, it is called Multicasting. If the message is sent to all the m nodes in the network it is called Broadcasting.

22. What is Multiplexing?

Multiplexing is the set of techniques that allows the simultaneous transmission of multiple signals across a single data link.

23. Name the categories of Multiplexing?

- a. Frequency Division Multiplexing (FDM)
- b. Time Division Multiplexing (TDM)
 - i. Synchronous TDM
 - ii. ASynchronous TDM Or Statistical TDM.
- c. Wave Division Multiplexing (WDM)

24. What is FDM?

FDM is an analog technique that can be applied when the bandwidth of a link is greater than the combined bandwidths of the signals to be transmitted.

25. What is WDM?

WDM is conceptually the same as FDM, except that the multiplexing and demultiplexing involve light signals transmitted through fiber optics channel.

26. What is TDM?

TDM is a digital process that can be applied when the data rate capacity of the transmission medium is greater than the data rate required by the sending and receiving devices.

27. What is Synchronous TDM?

In STDM, the multiplexer allocates exactly the same time slot to each device at all times, whether or not a device has anything to transmit.

28. List the layers of OSI

- a. Physical Layer
- b. Data Link Layer
- c. Network Layer
- d. Transport Layer
- e. Session Layer
- f. Presentation Layer
- g. Application Layer

29. Which layers are network support layers?

- a. Physical Layer
- b. Data link Layer and
- c. Network Layers

30. Which layers are user support layers?

- a. Session Layer
- b. Presentation Layer and
- c. Application Layer

31. Which layer links the network support layers and user support layers?

The Transport layer links the network support layers and user support layers.

32. What are the concerns of the Physical Layer?

Physical layer coordinates the functions required to transmit a bit stream over a physical medium.

- a. Physical characteristics of interfaces and media
- b. Representation of bits
- c. Data rate
- d. Synchronization of bits
- e. Line configuration
- f. Physical topology
- g. Transmission mode

33. What are the responsibilities of Data Link Layer?

The Data Link Layer transforms the physical layer, a raw transmission facility, to a reliable link and is responsible for node-node delivery.

- a. Framing
- b. Physical Addressing
- c. Flow Control
- d. Error Control
- e. Access Control

34. What are the responsibilities of Network Layer?

The Network Layer is responsible for the source-to-destination delivery of packet possibly across multiple networks (links).

- a. Logical Addressing
- b. Routing

35. What are the responsibilities of Transport Layer?

The Transport Layer is responsible for source-to-destination delivery of the entire message.

- a. Service-point Addressing
- b. Segmentation and reassembly
- c. Connection Control
- d. Flow Control
- e. Error Control

36. What are the responsibilities of Session Layer?

The Session layer is the network dialog Controller. It establishes, maintains and synchronizes the interaction between the communicating systems.

- a. Dialog control
- b. Synchronization

37. What are the responsibilities of Presentation Layer?

The Presentation layer is concerned with the syntax and semantics of the information exchanged between two systems.

- a. Translation
- b. Encryption
- c. Compression

38. What are the responsibilities of Application Layer?

The Application Layer enables the user, whether human or software, to access the network. It provides user interfaces and support for services such as e-mail, shared database management and other types of distributed information services.

- a. Network virtual Terminal
- b. File transfer, access and Management (FTAM)
- c. Mail services
- d. Directory Services

39. What are the two classes of hardware building blocks?

Nodes and Links.

40. What are the different link types used to build a computer network?

- a. Cables
- b. Leased Lines
- c. Last-Mile Links
- d. Wireless Links

41. What are the categories of Transmission media?

- a. Guided Media
- i. Twisted Pair cable
- 1. Shielded TP
- 2. Unshielded TP
- ii. Coaxial Cable
- iii. Fiber-optic cable
- b. Unguided Media
- i. Terrestrial microwave
- ii. Satellite Communication

42. What are the types of errors?

- a. Single-Bit error
- In a single-bit error, only one bit in the data unit has changed
- b. Burst Error
- A Burst error means that two or more bits in the data have changed.

43. What is Error Detection? What are its methods?

Data can be corrupted during transmission. For reliable communication errors must be deducted and Corrected. Error Detection uses the concept of redundancy, which means adding extra bits for detecting errors at the destination. The common Error Detection methods are

- a. Vertical Redundancy Check (VRC)
- b. Longitudinal Redundancy Check (VRC)
- c. Cyclic Redundancy Check (VRC)
- d. Checksum

44. What is Redundancy?

The concept of including extra information in the transmission solely for the purpose of comparison. This technique is called redundancy.

45. What is VRC?

It is the most common and least expensive mechanism for Error Detection. In VRC, a parity bit is added to every data unit so that the total number of 1s becomes even for even parity. It can detect all single-bit errors. It can detect burst errors only if the total number of errors in each data unit is odd.

46. What is LRC?

In LRC, a block of bits is divided into rows and a redundant row of bits is added to the whole block. It can detect burst errors. If two bits in one data unit are damaged and bits in exactly the same positions in another data unit are also damaged, the LRC checker will not detect an error. In LRC a redundant data unit follows n data units.

47. What is CRC?

CRC, is the most powerful of the redundancy checking techniques, is based on binary division.

48. What is Checksum?

Checksum is used by the higher layer protocols (TCP/IP) for error detection

49. List the steps involved in creating the checksum.

- a. Divide the data into sections
- b. Add the sections together using 1's complement arithmetic
- c. Take the complement of the final sum, this is the checksum.

50. What are the Data link protocols?

Data link protocols are sets of specifications used to implement the data link layer. The categories of Data Link protocols are 1. Asynchronous Protocols

- 2. Synchronous Protocols
- a. Character Oriented Protocols
- b. Bit Oriented protocols

51. Compare Error Detection and Error Correction:

The correction of errors is more difficult than the detection. In error detection, checks only any error has occurred. In error correction, the exact number of bits that are corrupted and location in the message are known. The number of the errors and the size of the message are important factors.

52. What is Forward Error Correction?

Forward error correction is the process in which the receiver tries to guess the message by using redundant bits.

53. Define Retransmission?

Retransmission is a technique in which the receiver detects the occurrence of an error and asks the sender to resend the message. Resending is repeated until a message arrives that the receiver believes is error-freed.

54. What are Data Words?

In block coding, we divide our message into blocks, each of k bits, called datawords. The block coding process is one-to-one. The same dataword is always encoded as the same codeword.

55. What are Code Words?

"r" redundant bits are added to each block to make the length n = k + r. The resulting nbit blocks are called codewords. $2^n - 2^k$ codewords that are not used. These codewords are invalid or illegal.

56. What is a Linear Block Code?

A linear block code is a code in which the exclusive OR (addition modulo-2) of two valid codewords creates another valid codeword.

57. What are Cyclic Codes?

Cyclic codes are special linear block codes with one extra property. In a cyclic code, if a codeword is cyclically shifted (rotated), the result is another codeword.

58. Define Encoder?

A device or program that uses predefined algorithms to encode, or compress audio or video data for storage or transmission use. A circuit that is used to convert between digital video and analog video.

59. Define Decoder?

A device or program that translates encoded data into its original format (e.g. it decodes the data). The term is often used in reference to MPEG-2 video and sound data, which must be decoded before it is output.

60. What is Framing?

Framing in the data link layer separates a message from one source to a destination, or from other messages to other destinations, by adding a sender address and a destination address. The destination address defines where the packet has to go and the sender address helps the recipient acknowledge the receipt.

61. What is Fixed Size Framing?

In fixed-size framing, there is no need for defining the boundaries of the frames. The size itself can be used as a delimiter.

62. Define Character Stuffing?

In byte stuffing (or character stuffing), a special byte is added to the data section of the frame when there is a character with the same pattern as the flag. The data section is stuffed with an extra byte. This byte is usually called the escape character (ESC), which has a predefined bit pattern. Whenever the receiver encounters the ESC character, it removes it from the data section and treats the next character as data, not a delimiting flag.

63. What is Bit Stuffing?

Bit stuffing is the process of adding one extra 0 whenever five consecutive Is follow a 0 in the data, so that the receiver does not mistake the pattern 0111110 for a flag.

64. What is Flow Control?

Flow control refers to a set of procedures used to restrict the amount of data that the sender can send before waiting for acknowledgment.

65. What is Error Control ?

Error control is both error detection and error correction. It allows the receiver to inform the sender of any frames lost or damaged in transmission and coordinates the

retransmission of those frames by the sender. In the data link layer, the term error control refers primarily to methods of error detection and retransmission.

66. What Automatic Repeat Request (ARQ)?

Error control is both error detection and error correction. It allows the receiver to inform the sender of any frames lost or damaged in transmission and coordinates the retransmission of those frames by the sender. In the data link layer, the term error control refers primarily to methods of error detection and retransmission. Error control in the data link layer is often implemented simply: Any time an error is detected in an exchange, specified frames are retransmitted. This process is called automatic repeat request (ARQ).

67. What is Stop-and-Wait Protocol?

In Stop and wait protocol, sender sends one frame, waits until it receives confirmation from the receiver (okay to go ahead), and then sends the next frame.

68. What is Stop-and-Wait Automatic Repeat Request?

Error correction in Stop-and-Wait ARQ is done by keeping a copy of the sent frame and retransmitting of the frame when the timer expires.

69. What is usage of Sequence Number in Relaible Transmission?

The protocol specifies that frames need to be numbered. This is done by using sequence numbers. A field is added to the data frame to hold the sequence number of that frame. Since we want to minimize the frame size, the smallest range that provides unambiguous communication. The sequence numbers can wrap around.

70. What is Pipelining ?

In networking and in other areas, a task is often begun before the previous task has ended. This is known as pipelining.

71. What is Sliding Window?

The sliding window is an abstract concept that defines the range of sequence numbers that is the concern of the sender and receiver. In other words, he sender and receiver need to deal with only part of the possible sequence numbers.

72. What is Piggy Backing?

A technique called piggybacking is used to improve the efficiency of the bidirectional protocols. When a frame is carrying data from A to B, it can also carry control information about arrived (or lost) frames from B; when a frame is carrying data from B to A, it can also carry control information about the arrived (or lost) frames from A.

73. What are the two types of transmission technology available?

(i) Broadcast and (ii) point-to-point

74. What is subnet?

A generic term for section of a large networks usually separated by a bridge or router.

75. Difference between the communication and transmission.

Transmission is a physical movement of information and concern issues like bit polarity, synchronisation, clock etc.

Communication means the meaning full exchange of information between two communication media.

76. What are the possible ways of data exchange?

(i) Simplex (ii) Half-duplex (iii) Full-duplex.

77. What is SAP?

Series of interface points that allow other computers to communicate with the other layers of network protocol stack.

78. What do you meant by "triple X" in Networks?

The function of PAD (Packet Assembler Disassembler) is described in a document known as X.3. The standard protocol has been defined between the terminal and the PAD, called X.28; another standard protocol exists between hte PAD and the network, called X.29. Together, these three recommendations are often called "triple X".

79. What is frame relay, in which layer it comes?

Frame relay is a packet switching technology. It will operate in the data link layer.

80. What is terminal emulation, in which layer it comes?

Telnet is also called as terminal emulation. It belongs to application layer.

81. What is Beaconing?

The process that allows a network to self-repair networks problems. The stations on the network notify the other stations on the ring when they are not receiving the transmissions. Beaconing is used in Token ring and FDDI networks.

82. What is redirector?

Redirector is software that intercepts file or prints I/O requests and translates them into network requests. This comes under presentation layer.

83. What is NETBIOS and NETBEUI?

NETBIOS is a programming interface that allows I/O requests to be sent to and received from a remote computer and it hides the networking hardware from applications.

NETBEUI is NetBIOS extended user interface. A transport protocol designed by microsoft and IBM for the use on small subnets.

84. What is RAID?

A method for providing fault tolerance by using multiple hard disk drives.

85. What is passive topology?

When the computers on the network simply listen and receive the signal, they are referred to as passive because they don't amplify the signal in any way. Example for passive topology -linear bus.

86. What is Brouter?

Hybrid devices that combine the features of both bridges and routers.

87. What is cladding?

A layer of a glass surrounding the center fiber of glass inside a fiber-optic cable.

88. What is point-to-point protocol?

A communications protocol used to connect computers to remote networking services including Internet service providers.

89. How Gateway is different from Routers?

A gateway operates at the upper levels of the OSI model and translates information between two completely different network architectures or data formats.

90. What is attenuation?

The degeneration of a signal over distance on a network cable is called attenuation.

91. What is MAC address?

The address for a device as it is identified at the Media Access Control (MAC) layer in the network architecture. MAC address is usually stored in ROM on the network adapter card and is unique.

92. Difference between bit rate and baud rate.

Bit rate is the number of bits transmitted during one second whereas baud rate refers to the number of signal units per second that are required to represent those bits. baud rate = (bit rate / N)

where N is no-of-bits represented by each signal shift.

93. What is Bandwidth?

Every line has an upper limit and a lower limit on the frequency of signals it can carry. This limited range is called the bandwidth.

94. What are the types of Transmission media?

Signals are usually transmitted over some transmission media that are broadly classified in to two categories.

a.) **Guided Media**: These are those that provide a conduit from one device to another that include twisted-pair, coaxial cable and fiber-optic cable. A signal traveling along any of these media is directed and is contained by the physical limits of the medium. Twisted-pair and coaxial cable use metallic that accept and transport signals in the form of electrical current. Optical fiber is a glass or plastic cable that accepts and transports signals in the form of light.

b.) **Unguided Media**: This is the wireless media that transport electromagnetic waves without using a physical conductor. Signals are broadcast either through air. This is done through radio communication, satellite communication and cellular telephony.

95. What is Project 802?

It is a project started by IEEE to set standards to enable intercommunication between equipment from a variety of manufacturers. It is a way for specifying functions of the physical layer, the data link layer and to some extent the network layer to allow for interconnectivity of major LAN protocols.

It consists of the following:

- 1. 802.1 is an internetworking standard for compatibility of different LANs and MANs across protocols.
- 2. 802.2 Logical link control (LLC) is the upper sublayer of the data link layer which is non-architecture-specific, that is remains the same for all IEEE-defined LANs.
- 3. Media access control (MAC) is the lower sublayer of the data link layer that contains some distinct modules each carrying proprietary information specific to the LAN product being used. The modules are Ethernet LAN (802.3), Token ring LAN (802.4), Token bus LAN (802.5).
- 4. 802.6 is distributed queue dual bus (DQDB) designed to be used in MANs.

96. What is Protocol Data Unit?

The data unit in the LLC level is called the protocol data unit (PDU). The PDU contains of four fields a destination service access point (DSAP), a source service access point (SSAP), a control field and an information field. DSAP, SSAP are addresses used by the LLC to identify the protocol stacks on the receiving and sending machines that are generating and using the data. The control field specifies whether the PDU frame is a information frame (I - frame) or a supervisory frame (S - frame) or a unnumbered frame (U - frame).

97. What are the different type of networking / internetworking devices?

- 1. **Repeater**: Also called a regenerator, it is an electronic device that operates only at physical layer. It receives the signal in the network before it becomes weak, regenerates the original bit pattern and puts the refreshed copy back in to the link.
- 2. **Bridges**: These operate both in the physical and data link layers of LANs of same type. They divide a larger network in to smaller segments. They contain logic that allow them to keep the traffic for each segment separate and thus are repeaters that relay a frame only the side of the segment containing the intended recipent and control congestion.

- **3. Routers**: They relay packets among multiple interconnected networks (i.e. LANs of different type). They operate in the physical, data link and network layers. They contain software that enable them to determine which of the several possible paths is the best for a particular transmission.
- 4. **Gateways**: They relay packets among networks that have different protocols (e.g. between a LAN and a WAN). They accept a packet formatted for one protocol and convert it to a packet formatted for another protocol before forwarding it. They operate in all seven layers of the OSI model.

98. What is ICMP?

ICMP is Internet Control Message Protocol, a network layer protocol of the TCP/IP suite used by hosts and gateways to send notification of datagram problems back to the sender. It uses the echo test / reply to test whether a destination is reachable and responding. It also handles both control and error messages.

99. What are the data units at different layers of the TCP / IP protocol suite?

The data unit created at the application layer is called a message, at the transport layer the data unit created is called either a segment or an user datagram, at the network layer the data unit created is called the datagram, at the data link layer the datagram is encapsulated in to a frame and finally transmitted as signals along the transmission media.

100. What is difference between ARP and RARP?

The address resolution protocol (ARP) is used to associate the 32 bit IP address with the 48 bit physical address, used by a host or a router to find the physical address of another host on its network by sending a ARP query packet that includes the IP address of the receiver.

The reverse address resolution protocol (RARP) allows a host to discover its Internet address when it knows only its physical address.

101. What is the minimum and maximum length of the header in the TCP segment and IP datagram?

The header should have a minimum length of 20 bytes and can have a maximum length of 60 bytes.

102. What is the range of addresses in the classes of internet addresses?

Class A	-	0.0.0.0	-	127.255.255.255
Class B	-	128.0.0.0	-	191.255.255.255
Class C	-	192.0.0.0	-	223.255.255.255
Class D	-	224.0.0.0	-	239.255.255.255
Class E	-	240.0.0.0	-	247.255.255.255

103. What is the difference between TFTP and FTP application layer protocols?

The Trivial File Transfer Protocol (TFTP) allows a local host to obtain files from a remote host but does not provide reliability or security. It uses the fundamental packet delivery services offered by UDP.

The File Transfer Protocol (FTP) is the standard mechanism provided by TCP / IP for copying a file from one host to another. It uses the services offer by TCP and so is reliable and secure. It establishes two connections (virtual circuits) between the hosts, one for data transfer and another for control information.

104. What are major types of networks and explain?

- 1. **Server-based network**: provide centralized control of network resources and rely on server computers to provide security and network administration
- 2. **Peer-to-peer network**: computers can act as both servers sharing resources and as clients using the resources.

105. What are the important topologies for networks?

1. **BUS topology**: In this each computer is directly connected to primary network cable in a single line.

Advantages: Inexpensive, easy to install, simple to understand, easy to extend.

- 2. **STAR topology**: In this all computers are connected using a central hub. Advantages: Can be inexpensive, easy to install and reconfigure and easy to trouble shoot physical problems.
- **3. RING topology**: In this all computers are connected in loop. Advantages: All computers have equal access to network media, installation can be simple, and signal does not degrade as much as in other topologies because each computer regenerates it.

106. What is mesh network?

A network in which there are multiple network links between computers to provide multiple paths for data to travel.

107. What is difference between baseband and broadband transmission?

In a baseband transmission, the entire bandwidth of the cable is consumed by a single signal. In broadband transmission, signals are sent on multiple frequencies, allowing multiple signals to be sent simultaneously.

108. Explain 5-4-3 rule?

In a Ethernet network, between any two points on the network ,there can be no more than five network segments or four repeaters, and of those five segments only three of segments can be populated.

109. What MAU?

In token Ring , hub is called Multistation Access Unit(MAU).

110. What is the difference between routable and non- routable protocols?

Routable protocols can work with a router and can be used to build large networks. Non-Routable protocols are designed to work on small, local networks and cannot be used with a router.

111. Why should you care about the OSI Reference Model?

It provides a framework for discussing network operations and design.

112. What is logical link control?

One of two sublayers of the data link layer of OSI reference model, as defined by the IEEE 802 standard. This sublayer is responsible for maintaining the link between computers when they are sending data across the physical network connection.

113. What is virtual channel?

Virtual channel is normally a connection from one source to one destination, although multicast connections are also permitted. The other name for virtual channel is virtual circuit.

114. What is virtual path?

Along any transmission path from a given source to a given destination, a group of virtual circuits can be grouped together into what is called path.

115. What is packet filter?

Packet filter is a standard router equipped with some extra functionality. The extra functionality allows every incoming or outgoing packet to be inspected. Packets meeting some criterion are forwarded normally. Those that fail the test are dropped.

116. What is traffic shaping?

One of the main causes of congestion is that traffic is often busy. If hosts could be made to transmit at a uniform rate, congestion would be less common. Another open loop method to help manage congestion is forcing the packet to be transmitted at a more predictable rate. This is called traffic shaping.

117. What is multicast routing?

Sending a message to a group is called multicasting, and its routing algorithm is called multicast routing.

118. What is region?

When hierarchical routing is used, the routers are divided into what we will call regions, with each router knowing all the details about how to route packets to destinations within its own region, but knowing nothing about the internal structure of other regions.

119. What is silly window syndrome?

It is a problem that can ruin TCP performance. This problem occurs when data are passed to the sending TCP entity in large blocks, but an interactive application on the receiving side reads 1 byte at a time.

120. What are Digrams and Trigrams?

The most common two letter combinations are called as digrams. e.g. th, in, er, re and an. The most common three letter combinations are called as trigrams. e.g. the, ing, and, and ion.

121. Expand IDEA.

IDEA stands for International Data Encryption Algorithm.

122. What is wide-mouth frog?

Wide-mouth frog is the simplest known key distribution center (KDC) authentication protocol.

123. What is Mail Gateway?

It is a system that performs a protocol translation between different electronic mail delivery protocols.

124. What is IGP (Interior Gateway Protocol)?

It is any routing protocol used within an autonomous system.

125. What is EGP (Exterior Gateway Protocol)?

It is the protocol the routers in neighboring autonomous systems use to identify the set of networks that can be reached within or via each autonomous system.

126. What is autonomous system?

It is a collection of routers under the control of a single administrative authority and that uses a common Interior Gateway Protocol.

127. What is BGP (Border Gateway Protocol)?

It is a protocol used to advertise the set of networks that can be reached with in an autonomous system. BGP enables this information to be shared with the autonomous system. This is newer than EGP (Exterior Gateway Protocol).

128. What is Gateway-to-Gateway protocol?

It is a protocol formerly used to exchange routing information between Internet core routers.

129. What is NVT (Network Virtual Terminal)?

It is a set of rules defining a very simple virtual terminal interaction. The NVT is used in the start of a Telnet session.

130. What is a Multi-homed Host?

It is a host that has a multiple network interfaces and that requires multiple IP addresses is called as a Multi-homed Host.

131. What is Kerberos?

It is an authentication service developed at the Massachusetts Institute of Technology. Kerberos uses encryption to prevent intruders from discovering passwords and gaining unauthorized access to files.

132. What is OSPF?

It is an Internet routing protocol that scales well, can route traffic along multiple paths, and uses knowledge of an Internet's topology to make accurate routing decisions.

133. What is Proxy ARP?

It is using a router to answer ARP requests. This will be done when the originating host believes that a destination is local, when in fact is lies beyond router.

134. What is SLIP (Serial Line Interface Protocol)?

It is a very simple protocol used for transmission of IP datagrams across a serial line.

135. What is RIP (Routing Information Protocol)?

It is a simple protocol used to exchange information between the routers.

136. What is source route?

It is a sequence of IP addresses identifying the route a datagram must follow. A source route may optionally be included in an IP datagram header.

When were OSI model developed and why its standard called 802.XX and so on?

OSI model was developed in February1980 that why these also known as 802.XX Standard (Notice 80 means ==> 1980, 2means ==> February)

What is Full form of ADS?

Active Directory Structure

How will you register and activate windows?

If you have not activated windows XP, you can do so at any time by clicking the windows

Activation icon in the system tray to initiate activation. Once you have activated windows XP,

this icon disappears from the system tray.

For registration

Start ==> Run ==> regwiz /r

Where do we use cross and standard cable?

Computer to computer ==> cross Switch/hub to switch/hub ==>cross Computer to switch/hub ==>standard

How many pins do serial ports have?

In computer it's known as com port and could be available in 9pin or 25 pin. On router it have 60 pins.

How will check ip address on 98?

Start ==> Run ==> command ==> winipcfg

How will you make partition after installing windows?

My computer ==> right click ==> manage ==> disk management ==> select free space ==> right click ==> New partition

What is IP?

It's a unique 32 bits software address of a node in a network.

What is private IP?

Three ranges of IP addresses have been reserved for private address and they are not valid for use on the Internet. If you want to access internet with these address you must have to use proxy server or NAT server (on normal cases the role of proxy server is played by your ISP.).If you do decide to implement a private IP address range, you can use IP addresses from any of the following classes:

Class A 10.0.0.0 10.255.255.255

Class B 172.16.0.0 172.31.255.255

Class C 192.168.0.0 192.168.255.255

What is public IP address?

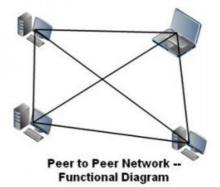
A public IP address is an address leased from an ISP that allows or enables direct Internet communication.

What's the benefit of subnetting?

Reduce the size of the routing tables.

Reduce network traffic. Broadcast traffic can be isolated within a single logical network.

Provide a way to secure network traffic by isolating it from the rest of the network.


What are the differences between static ip addressing and dynamic ip addressing?

With static IP addressing, a computer (or other device) is configured to always use the same IP address. With dynamic addressing, the IP address can change periodically and is managed by a centralized network service

What is APIPA?

Automatic private IP addressing (APIPA) is a feature mainly found in Microsoft operating systems. APIPA enables clients to still communicate with other computers on the same network segment until an IP address can be obtained from a DHCP server, allowing the machine to fully participate on the network. The range of these IP address are the 169.254.0.1 to 169.254.255.254 with a default Class B subnet mask of 255.255.0.0.

In simple words Computer Network is a system in which all computers are connected to share information and resources. This connection can be client/server or peer-peer connection. In

Peer –to-Peer networking model every peer are equally privileged and they distribute the work load among them. Client –server model of computing where task is distributed between providers of service called servers and service requester called clients.

(Q) What is a protocol?

(A) Protocol is a set of rules for data communication and transfer. It defines what is communicated, how it is communicated, when it can be communicated. Key elements of protocol are semantics, syntax and timing.

(Q) Tell about TCP/IP protocol?

(A) Transmission Control Protocol/Internet Protocol (TCP/IP) is the basic communication protocol. It also used in Intranet and extranet. TCP/IP uses the client/server model of communication in which a computer user request and he/she will be provided a service.

(Q) What is switching?

(A) Switching in data communication is of 3 types

Circuit switching, Packet switching and Massage switching

(Q) Difference between Analog and digital signals?

(A) Analog signals have unlimited number of values where as digital signal has limited number of values.

(Q) In which form Data is transmitted over a medium?

(A) Data is transmitted over a medium in the form of electromagnetic signals.

(Q) What is Bandwidth?

(A) Bandwidth is the range (difference between highest frequency and lowest frequency) of frequency that a medium can pass.

(Q) List the factors on which Data transmission depends?

(A) It depends on Bandwidth, quality of signals and levels of signals.

(Q) What is RIP?

(A) RIP stands for routing Information Protocol. RIP is used for exchanging information between two routers.

(Q) Tell about PING utility?

(A) PING stands for Packet Internet Gopher. PING is used to ensure connectivity between two computers. ICMP (Internet Control Messaging protocol) protocol works behind this utility.

(Q) Difference between Hubs, Switch and Routers?

(A) Hub with multiple ports is a common connection point for devices in a computer network. Mainly used in LAN connections.

Switch – Between LAN segments a device is used to filter that is Switch. These operate at Data link layer.

Router is a device that forwards data packets along the network.

(Q) Tell about Anonymous FTP and its uses?

(A) When you want to connect to host without any logins then Anonymous FTP provides access in a guest or anonymous form. Anonymous FTP has very strict control over access areas of anonymous user.

sWhat is a computer Network?

A network is any collection of independent computers that communicate with one another over a shared network medium. A computer network is a collection of two or more connected computers. When these computers are joined in a network, people can share files and peripherals such as modems, printers, tape backup drives, or CD-ROM drives. When networks at multiple locations are connected using services available from phone companies, people can send e-mail, share links to the global Internet, or conduct video conferences in real time with other remote users. When a network becomes open sourced it can be managed properly with <u>online</u> collaboration software. As companies rely on applications like electronic mail and database management for core business operations, computer networking becomes increasingly more important.

Every network includes:

- At least two computers Server or Client workstation.
- Networking Interface Card's (NIC)
- A connection medium, usually a wire or cable, although wireless communication between networked computers and peripherals is also possible.
- Network Operating system software, such as Microsoft Windows NT or 2000, Novell NetWare, Unix and Linux.

Types of Networks:

LANs (Local Area Networks)

A network is any collection of independent computers that communicate with one another over a shared network medium. *LANs are networks usually confined to a geographic area,* such as a single building or a college campus. LANs can be small, linking as few as three computers, but often link hundreds of computers used by thousands of people. The development of standard networking protocols and media has resulted in worldwide proliferation of LANs throughout business and educational organizations.

WANs (Wide Area Networks)

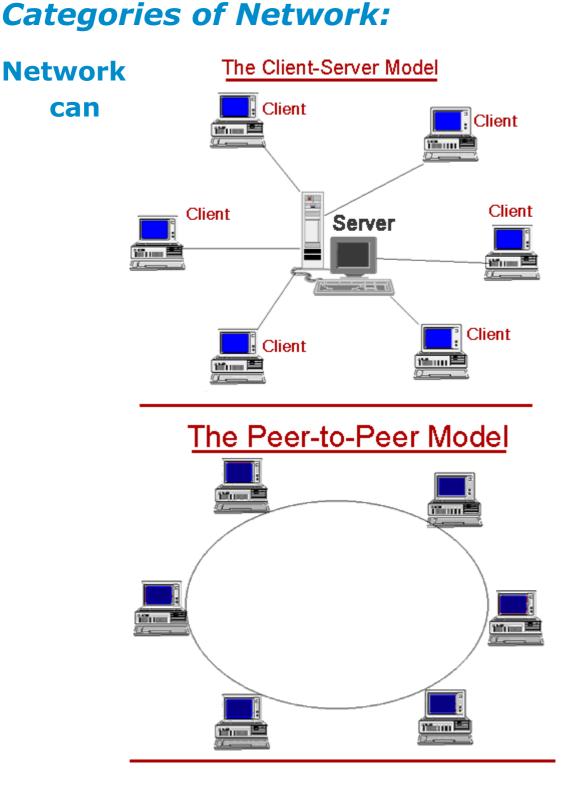
Wide area networking combines multiple LANs that are geographically separate. This is accomplished by connecting the different LANs using services such as dedicated leased phone lines, dial-up phone lines (both synchronous and asynchronous), satellite links, and data packet carrier services. Wide area networking can be as simple as a modem and remote access server for employees to dial into, or it can be as complex as hundreds of branch offices globally linked using special routing protocols and filters to minimize the expense of sending data sent over vast distances.

Internet

The Internet is a system of linked networks that are worldwide in scope and facilitate data communication services such as remote login, file transfer, electronic mail, the World Wide Web and newsgroups.

With the meteoric rise in demand for connectivity, the Internet has become a communications highway for millions of users. The Internet was initially restricted to military and academic institutions, but now it is a full-fledged conduit for any and all forms of information and commerce. Internet websites now provide personal, educational, political and economic resources to every corner of the planet.

Intranet


With the advancements made in browser-based software for the Internet, many private organizations are implementing intranets. *An intranet is a private network utilizing Internet-type tools,* but available only within that organization. For large organizations, an intranet provides an easy access mode to corporate information for employees.

MANs (Metropolitan area Networks)

The refers to a network of computers with in a City.

VPN (Virtual Private Network)

VPN uses a technique known as tunneling to transfer data securely on the Internet to a remote access server on your workplace network. Using a VPN helps you save money by using the public Internet instead of making long–distance phone calls to connect securely with your private network. There are two ways to create a VPN connection, by dialing an Internet service provider (ISP), or connecting directly to Internet.

be divided in to two main categories:

- Peer-to-peer.
- Server based.

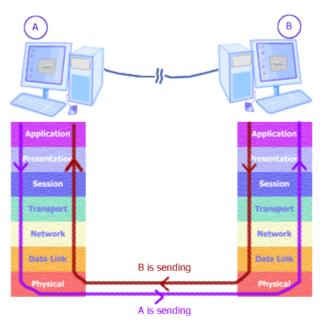
In peer-to-peer networking there are no dedicated servers or hierarchy among the computers. All of the computers are equal and therefore known as peers. Normally each computer serves as Client/Server and there is no one assigned to be an administrator responsible for the entire network.

Peer-to-peer networks are good choices for needs of small organizations where the users are allocated in the same general area, security is not an issue and the organization and the network will have limited growth within the foreseeable future.

The term Client/server refers to the concept of sharing the work involved in processing data between the client computer and the most powerful server computer.

The client/server network is the most efficient way to provide:

- Databases and management of applications such as Spreadsheets, Accounting, Communications and Document management.
- Network management.
- Centralized file storage.


The client/server model is basically an implementation of distributed or cooperative processing. At the heart of the model is the concept of splitting application functions between a client and a server processor. The division of labor between the different processors enables the application designer to place an application function on the processor that is most appropriate for that function. This lets the software designer optimize the use of processors--providing the greatest possible return on investment for the hardware.

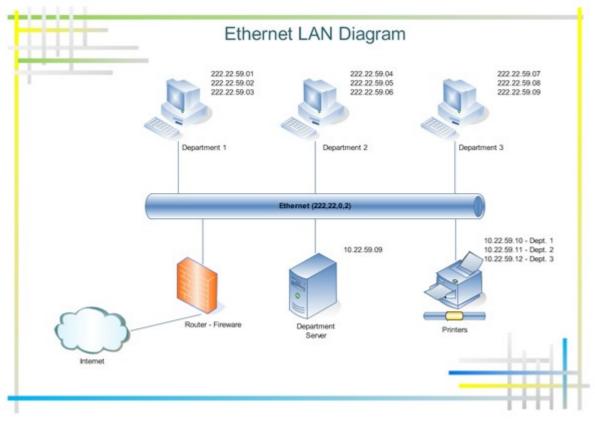
Client/server application design also lets the application provider mask the actual

location of application function. The user often does not know where a specific operation is executing. The entire function may execute in either the PC or server, or the function may be split between them. This masking of application function locations enables system implementers to upgrade portions of a system over time with a minimum disruption of application operations, while protecting the investment in existing hardware and software.

The OSI Model:

Open System Interconnection (OSI) reference model has become an International standard and serves as a guide for networking. This model is the best known and most widely used guide to describe networking environments. Vendors design network products based on the specifications of the OSI model.

It provides a description of how network hardware and software work together in a layered fashion to make communications possible. It also helps with trouble shooting by providing a frame of reference that describes how components are supposed to function.


There are seven to get familiar with and these are the physical layer, data link layer, network layer, transport layer, session layer, presentation layer, and the application layer.

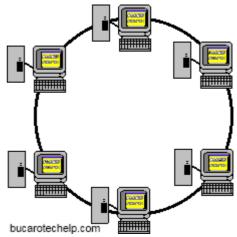
- **Physical Layer**, is just that the physical parts of the network such as wires, cables, and there media along with the length. Also this layer takes note of the electrical signals that transmit data throughout system.
- **Data Link Layer**, this layer is where we actually assign meaning to the electrical signals in the network. The layer also determines the size and format of data sent to printers, and other devices. Also I

don't want to forget that these are also called nodes in the network. Another thing to consider in this layer is will also allow and define the error detection and correction schemes that insure data was sent and received.

- **Network Layer,** this layer provides the definition for the connection of two dissimilar networks.
- Transport Layer, this layer allows data to be broken into smaller packages for data to be distributed and addressed to other nodes (workstations).
- Session Layer, this layer helps out with the task to carry information from one node (workstation) to another node (workstation). A session has to be made before we can transport information to another computer.
- **Presentation Layer**, this layer is responsible to code and decode data sent to the node.
- **Application Layer**, this layer allows you to use an application that will communicate with say the operation system of a server. A good example would be using your web browser to interact with the operating system on a server such as Windows NT, which in turn gets the data you requested.

Network Architectures:

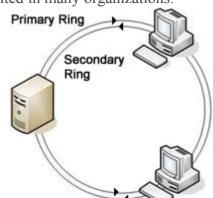
Ethernet


Ethernet is the most popular physical layer LAN technology in use today. Other LAN types include Token Ring, Fast Ethernet, Fiber Distributed Data Interface (FDDI), Asynchronous Transfer Mode (ATM) and LocalTalk. <u>Ethernet connection</u> is popular because it strikes a good balance between speed, cost and ease of installation. These benefits, combined with wide acceptance in the computer marketplace and the ability to support virtually all popular network protocols, make Ethernet an ideal networking technology for most computer users today. The Institute for Electrical and Electronic Engineers (IEEE) defines the Ethernet standard as IEEE Standard 802.3. This standard defines rules for configuring an Ethernet network as well as specifying how elements in an Ethernet network interact with one another. By adhering to the IEEE standard, network equipment and network protocols can communicate efficiently.

Fast Ethernet

For Ethernet networks that need higher transmission speeds, the Fast Ethernet standard (IEEE 802.3u) has been established. This standard raises the Ethernet speed limit from 10 Megabits per second (Mbps) to 100 Mbps with only minimal changes to the existing cable structure. There are three types of Fast Ethernet: 100BASE-TX for use with level 5 UTP cable, 100BASE-FX for use with fiber-optic cable, and 100BASE-T4 which utilizes an extra two wires for use with level 3 UTP cable. The 100BASE-TX standard has become the most popular due to its close compatibility with the 10BASE-T Ethernet standard. For the network manager, the incorporation of Fast Ethernet into an existing configuration presents a host of decisions. Managers must determine the number of users in each site on the network that need the higher throughput, decide which segments of the backbone need to be reconfigured specifically for 100BASE-T and then choose the necessary hardware to connect the 100BASE-T segments with existing 10BASE-T segments. Gigabit Ethernet is a future technology that promises a migration path beyond Fast Ethernet so the next generation of networks will support even higher data transfer speeds.

Token Ring


Token Ring is another form of network configuration which differs from Ethernet in that all messages are transferred in a unidirectional manner along the ring at all times. Data is transmitted in tokens, which are passed along the ring and viewed by each device. When a device sees a message addressed to it, that device copies

the message and then marks that message as being read. As the message makes its way along the ring, it eventually gets back to the sender who now notes that the message was received by the intended device. The sender can then remove the message and free that token for use by others.

Various PC vendors have been proponents of Token Ring networks at different times and thus these types of networks have been implemented in many organizations.

FDDI (Fiber-Distributed Data Interface) is a standard for data transmission on fiber optic lines in a local area network that can extend in range up to 200 km (124 miles). The FDDI protocol is based on the token ring protocol. In addition to being large geographically, an FDDI local area network can support thousands of users.

Protocols:

Network protocols are standards that allow computers to communicate. A protocol defines how computers identify one another on a network, the form that the data should take in transit, and how this information is processed once it reaches its final destination. Protocols also define procedures for handling lost or damaged transmissions or "packets." TCP/IP (for UNIX, Windows NT, Windows 95 and other platforms), IPX (for Novell NetWare), DECnet (for networking Digital Equipment Corp. computers), AppleTalk (for Macintosh computers), and NetBIOS/NetBEUI (for LAN Manager and Windows NT networks) are the main types of network protocols in use today.

Although each network protocol is different, they all share the same physical cabling. This common method of accessing the physical network allows multiple protocols to peacefully coexist over the network media, and allows the builder of a network to use common hardware for a variety of protocols. This concept is known as "protocol independence,"

Protocol	Acrony m	lts Job
Point-To-Point	TCP/IP	The backbone protocol of the internet. Popular also for intranets using the internet
Transmission Control Protocol/internet Protocol	TCP/IP	The backbone protocol of the internet. Popular

Some Important Protocols and their job:

		also for intranets using the internet
Internetwork Package Exchange/Sequenced Packet Exchange	IPX/SPX	This is a standard protocol for Novell Network Operating System
NetBIOS Extended User Interface	NetBEUI	This is a Microsoft protocol that doesn't support routing to other networks
File Transfer Protocol	FTP	Used to send and receive files from a remote host
Hyper Text Transfer Protocol	НТТР	Used for the web to send documents that are encoded in HTML.
Network File Services	NFS	Allows network nodes or workstations to access files and drives as if they were their own.
Simple Mail Transfer Protocol	SMTP	Used to send Email over a network
Telnet		Used to connect to a host and emulate a terminal that the

	remote server can
	recognize

Introduction to TCP/IP Networks:

TCP/IP-based networks play an increasingly important role in computer networks. Perhaps one reason for their appeal is that they are based on an open specification that is not controlled by any vendor.

What Is TCP/IP?

TCP stands for Transmission Control Protocol and IP stands for Internet Protocol. The term TCP/IP is not limited just to these two protocols, however. Frequently, the term TCP/IP is used to refer to a group of protocols related to the TCP and IP protocols such as the User Datagram Protocol (UDP), File Transfer Protocol (FTP), Terminal Emulation Protocol (TELNET), and so on.

The Origins of TCP/IP

In the late 1960s, DARPA (the Defense Advanced Research Project Agency), in the United States, noticed that there was a rapid proliferation of computers in military communications. Computers, because they can be easily programmed, provide flexibility in achieving network functions that is not available with other types of communications equipment. The computers then used in military communications were manufactured by different vendors and were designed to interoperate with computers from that vendor only. Vendors used proprietary protocols in their communications equipment. The military had a multi vendor network but no common protocol to support the heterogeneous equipment from different vendors

Net work Cables and Stuff:

In the network you will commonly find three types of cables used these are the, coaxial cable, fiber optic and twisted pair.

Thick Coaxial Cable

This type cable is usually yellow in color and used in what is called thicknets, and has two conductors. This coax can be used in 500-meter lengths. The cable itself is made up of a solid center wire with a braided metal shield and plastic sheathing protecting the rest of the wire.

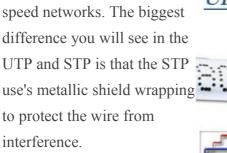
Thin Coaxial Cable

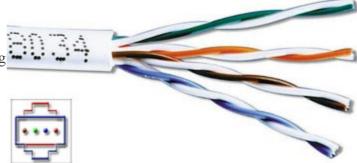
As with the thick coaxial cable is used in thicknets the thin version is used in thinnets. This type cable is also used called or referred to as RG-58. The cable is really just a cheaper version of the thick cable.

Fiber Optic Cable

As we all know fiber optics are pretty darn cool and not cheap. This cable is smaller and can carry a vast amount of information fast and over long distances.

Twisted Pair Cables


These come in two flavors of unshielded and shielded.


Shielded Twisted Pair (STP)

Is more common in high-

Unshielded twisted pair (UTP)

-Something else to note about these cables is that they are defined in numbers also. The bigger the number the better the protection from interference. Most networks should go with no less than a CAT 3 and CAT 5 is most recommended.

-Now you know about cables we need to know about connectors. This is pretty important and you will most likely need the RJ-45 connector. This is the cousin of the phone jack connector and looks real similar with the exception that the RJ-45 is bigger. Most commonly your connector are in two flavors and this is BNC (Bayonet Naur Connector) used in thicknets and the RJ-45 used in smaller networks using UTP/STP.

Unshielded Twisted Pair (UTP)

This is the most popular form of cables in the network and the cheapest form that you can go with. The UTP has four pairs of wires and all inside plastic sheathing. The biggest reason that we call it Twisted Pair is to protect the wires from interference from themselves. Each wire is only protected with a thin plastic sheath.

Ethernet Cabling

Now to familiarize you with more on the Ethernet and it's cabling we need to look at the 10's. 10Base2, is considered the thin Ethernet, thinnet, and thinwire which uses light coaxial cable to create a 10 Mbps network. The cable segments in this network can't be over 185 meters in length. These cables connect with the BNC connector. Also as a note these unused connection must have a terminator, which will be a 50-ohm terminator.

10Base5, this is considered a thicknet and is used with coaxial cable arrangement such as the BNC connector. The good side to the coaxial cable is the high-speed transfer and cable segments can be up to 500 meters between nodes/workstations. You will typically see the same speed as the 10Base2 but larger cable lengths for more versatility.

10BaseT, the "T" stands for twisted as in UTP (Unshielded Twisted Pair) and uses this for 10Mbps of transfer. The down side to this is you can only have cable lengths of 100 meters between nodes/workstations. The good side to this network is they are

easy to set up and cheap! This is why they are so common an ideal for small offices or homes.

100BaseT, is considered Fast Ethernet uses STP (Shielded Twisted Pair) reaching data transfer of 100Mbps. This system is a little more expensive but still remains popular as the 10BaseT and cheaper than most other type networks. This on of course would be the cheap fast version.

10BaseF, this little guy has the advantage of fiber optics and the F stands for just that. This arrangement is a little more complicated and uses special connectors and NIC's along with hubs to create its network. Pretty darn neat and not to cheap on the wallet.

An important part of designing and installing an Ethernet is selecting the appropriate Ethernet medium. There are four major types of media in use today: Thickwire for 10BASE5 networks, thin coax for 10BASE2 networks, unshielded twisted pair (UTP) for 10BASE-T networks and fiber optic for 10BASE-FL or Fiber-Optic Inter-Repeater Link (FOIRL) networks. This wide variety of media reflects the evolution of Ethernet and also points to the technology's flexibility. Thickwire was one of the first cabling systems used in Ethernet but was expensive and difficult to use. This evolved to thin coax, which is easier to work with and less expensive.

Network Topologies:

What is a Network topology?

A network topology is the geometric arrangement of nodes and cable links in a LAN,

There are three topology's to think about when you get into networks. These are the star, rind, and the bus.

Star, in a star topology each node has a dedicated set of wires connecting it to a central network hub. Since all traffic passes through the hub, the hub becomes a central point for isolating network problems and gathering network statistics.

Ring, a ring topology features a logically closed loop. Data packets travel in a single

direction around the ring from one network device to the next. Each network device acts as a repeater, meaning it regenerates the signal

Bus, the bus topology, each node (computer, server, peripheral etc.) attaches directly to a common cable. This topology most often serves as the backbone for a network. In some instances, such as in classrooms or labs, a bus will connect small workgroups

Collisions:

Ethernet is a shared media, so there are rules for sending packets of data to avoid conflicts and protect data integrity. Nodes determine when the network is available for sending packets. It is possible that two nodes at different locations attempt to send data at the same time. When both PCs are transferring a packet to the network at the same time, a collision will result.

Minimizing collisions is a crucial element in the design and operation of networks. Increased collisions are often the result of too many users on the network, which results in a lot of contention for network bandwidth. This can slow the performance of the network from the user's point of view. Segmenting the network, where a network is divided into different pieces joined together logically with a bridge or switch, is one way of reducing an overcrowded network.

Ethernet Products:

The standards and technology that have just been discussed help define the specific products that network managers use to build Ethernet networks. The following text discusses the key products needed to build an Ethernet LAN.

Transceivers

Transceivers are used to connect nodes to the various Ethernet media. Most computers and network interface cards contain a built-in 10BASE-T or 10BASE2 transceiver, allowing them to be connected directly to Ethernet without requiring an external transceiver. Many Ethernet devices provide an AUI connector to allow the user to connect to any media type via an external transceiver. The AUI connector consists of a 15-pin D-shell type connector, female on the computer side, male on the

transceiver side. Thickwire (10BASE5) cables also use transceivers to allow connections.

For Fast Ethernet networks, a new interface called the MII (Media Independent Interface) was developed to offer a flexible way to support 100 Mbps connections. The MII is a popular way to connect 100BASE-FX links to copper-based Fast Ethernet devices.

Network Interface Cards:

Network interface cards, commonly referred to as NICs, and are used to connect a PC to

and are used to connect a PC to a network. The NIC provides a

physical connection between the networking cable and the computer's internal bus. Different computers have different bus architectures; PCI bus master slots are most commonly found on 486/Pentium PCs and ISA expansion slots are commonly found on 386 and older PCs. NICs come in three basic varieties: 8-bit, 16-bit, and 32-bit. The larger the number of bits that can be transferred to the NIC, the faster the NIC can transfer data to the network cable.

Many NIC adapters comply with Plug-n-Play specifications. On these systems, NICs are automatically configured without user intervention, while on non-Plug-n-Play systems, configuration is done manually through a setup program and/or DIP switches.

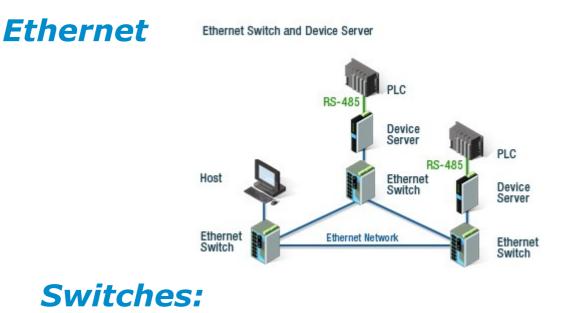
Cards are available to support almost all networking standards, including the latest Fast Ethernet environment. Fast Ethernet NICs are often 10/100 capable, and will automatically set to the appropriate speed. Full duplex networking is another option, where a dedicated connection to a switch allows a NIC to operate at twice the speed.

Hubs/Repeaters:

Hubs/repeaters are used to connect together two or more Ethernet segments of any media type. In larger designs, signal quality begins to deteriorate as segments exceed their maximum length. Hubs provide the signal amplification required to allow a segment to be extended a greater distance. A hub takes any incoming signal and repeats it out all ports.

Ethernet hubs are necessary in star topologies such as 10BASE-T. A multi-port twisted pair hub allows several point-to-point segments to be joined into one network. One end of the point-to-point link is attached to the hub and the other is attached to the computer. If the hub is attached to a backbone, then all computers at the end of the twisted pair segments can communicate with all the hosts on the backbone. The number and type of hubs in any one-collision domain is limited by the Ethernet rules. These repeater rules are discussed in more detail later.

Network Type	Max Nodes Per Segment	Max Distance Per Segment	
10BASE-T	2	100m	
10BASE2	30	185m	
10BASE5	100	500m	
10BASE-FL	2	2000m	


Adding Speed:

While repeaters allow LANs to extend beyond normal distance limitations, they still limit the number of nodes that can be supported. Bridges and switches, however, allow LANs to grow significantly larger by virtue of their ability to support full Ethernet segments on each port. Additionally, bridges and switches selectively filter network traffic to only those packets needed on each segment - this significantly increases throughput on each segment and on the overall network. By providing better performance and more flexibility for network topologies, bridges and switches will continue to gain popularity among network managers.

Bridges:

The function of a bridge is to connect separate networks together. **Bridges** connect different networks types (such as Ethernet and Fast Ethernet) or networks of the same type. Bridges map the Ethernet addresses of the nodes residing on each network segment and allow only necessary traffic to pass through the bridge. When a packet is received by the bridge, the bridge determines the destination and source segments. If the segments are the same, the packet is dropped ("filtered"); if the segments are different, then the packet is "forwarded" to the correct segment. Additionally, bridges do not forward bad or misaligned packets.

Bridges are also called "store-and-forward" devices because they look at the whole Ethernet packet before making filtering or forwarding decisions. Filtering packets, and regenerating forwarded packets enable bridging technology to split a network into separate collision domains. This allows for greater distances and more repeaters to be used in the total network design.

Ethernet switches are an expansion of the concept in Ethernet bridging. LAN switches can link four, six, ten or more networks together, and have two basic architectures: cut-through and store-and-forward. In the past, cut-through switches were faster because they examined the packet destination address only before forwarding it on to its destination segment. A store-and-forward switch, on the other hand, accepts and analyzes the entire packet before forwarding it to its destination.

It takes more time to examine the entire packet, but it allows the switch to catch certain packet errors and keep them from propagating through the network. Both cutthrough and store-and-forward switches separate a network into collision domains, allowing network design rules to be extended. Each of the segments attached to an Ethernet switch has a full 10 Mbps of bandwidth shared by fewer users, which results in better performance (as opposed to hubs that only allow bandwidth sharing from a single Ethernet). Newer switches today offer high-speed links, FDDI, Fast Ethernet or ATM. These are used to link switches together or give added bandwidth to high-traffic servers. A network composed of a number of switches linked together via uplinks is termed a "collapsed backbone" network.

Routers:

Routers filter out network traffic by specific protocol rather than by packet address. Routers also divide networks logically instead of physically. An IP router can divide a network into various subnets so that only traffic destined for particular IP addresses can pass between segments. Network speed often decreases due to this type of intelligent forwarding. Such filtering takes more time than that exercised in a switch or bridge, which only looks at the Ethernet address. However, in more complex networks, overall efficiency is improved by using routers.

What is a network firewall?

A firewall is a system or group of systems that enforces an access control policy between two networks. The actual means by which this is accomplished varies widely, but in principle, the firewall can be thought of as a pair of mechanisms: one which exists to block traffic, and the other which exists to permit traffic. Some firewalls place a greater emphasis on blocking traffic, while others emphasize permitting traffic. Probably the most important thing to recognize about a firewall is that it implements an access control policy. If you don't have a good idea of what kind of access you want to allow or to deny, a firewall really won't help you. It's also important to recognize that the firewall's configuration, because it is a mechanism for enforcing policy, imposes its policy on everything behind it. Administrators for firewalls managing the connectivity for a large number of hosts therefore have a heavy responsibility.

Network Design Criteria:

Ethernets and Fast Ethernets have design rules that must be followed in order to function correctly. Maximum number of nodes, number of repeaters and maximum segment distances are defined by the electrical and mechanical design properties of each type of Ethernet and Fast Ethernet media.

A network using repeaters, for instance, functions with the timing constraints of Ethernet. Although electrical signals on the Ethernet media travel near the speed of light, it still takes a finite time for the signal to travel from one end of a large Ethernet to another. The Ethernet standard assumes it will take roughly 50 microseconds for a signal to reach its destination.

Ethernet is subject to the "5-4-3" rule of repeater placement: the network can only have five segments connected; it can only use four repeaters; and of the five segments, only three can have users attached to them; the other two must be interrepeater links.

If the design of the network violates these repeater and placement rules, then timing guidelines will not be met and the sending station will resend that packet. This can lead to lost packets and excessive resent packets, which can slow network performance and create trouble for applications. Fast Ethernet has modified repeater rules, since the minimum packet size takes less time to transmit than regular Ethernet. The length of the network links allows for a fewer number of repeaters. In Fast Ethernet networks, there are two classes of repeaters. Class I repeaters have a latency of 0.7 microseconds or less and are limited to one repeater per network. Class II repeaters have a latency of 0.46 microseconds or less and are limited to two repeaters per network. The following are the distance (diameter) characteristics for these types of Fast Ethernet repeater combinations:

Fast Ethernet	Copper	Fiber
No Repeaters	100m	412m*
One Class I	200m	272m
Repeater	200m	272m
One Class II	205m	228m

Repeater		
Two Class II		
Repeaters		

* Full Duplex Mode 2 km

When conditions require greater distances or an increase in the number of nodes/repeaters, then a bridge, router or switch can be used to connect multiple networks together. These devices join two or more separate networks, allowing network design criteria to be restored. Switches allow network designers to build large networks that function well. The reduction in costs of bridges and switches reduces the impact of repeater rules on network design.

Each network connected via one of these devices is referred to as a separate collision domain in the overall network.

Types of Servers:

Device Servers

A device server is defined as a specialized, network-based hardware device designed to perform a single or specialized set of server functions. It is characterized by a minimal operating architecture that requires no per seat network operating system license, and client access that is independent of any operating system or proprietary protocol. In addition the device server is a "closed box," delivering extreme ease of installation, minimal maintenance, and can be managed by the client remotely via a Web browser.

Print servers, terminal servers, remote access servers and network time servers are examples of device servers which are specialized for particular functions. Each of these types of servers has unique configuration attributes in hardware or software that help them to perform best in their particular arena.

Print Servers

Print servers allow printers to be shared by other users on the network. Supporting either parallel and/or serial interfaces, a print server accepts print jobs from any person on the network using supported protocols and manages those jobs on each appropriate printer.

Print servers generally do not contain a large amount of memory; printers simply store information in a queue. When the desired printer becomes available, they allow the host to transmit the data to the appropriate printer port on the server. The print server can then simply queue and print each job in the order in which print requests are received, regardless of protocol used or the size of the job.

Multiport Device Servers

Devices that are attached to a network through a multiport device server can be shared between terminals and hosts at both the local site and throughout the network. A single terminal may be connected to several hosts at the same time (in multiple concurrent sessions), and can switch between them. Multiport device servers are also used to network devices that have only serial outputs. A connection between serial ports on different servers is opened, allowing data to move between the two devices.

Given its natural translation ability, a multi-protocol multiport device server can perform conversions between the protocols it knows, like LAT and TCP/IP. While server bandwidth is not adequate for large file transfers, it can easily handle host-tohost inquiry/response applications, electronic mailbox checking, etc. And it is far more economical than the alternatives of acquiring expensive host software and special-purpose converters. Multiport device and print servers give their users greater flexibility in configuring and managing their networks.

Whether it is moving printers and other peripherals from one network to another, expanding the dimensions of interoperability or preparing for growth, multiport device servers can fulfill your needs, all without major rewiring.

Access Servers

While Ethernet is limited to a geographic area, remote users such as traveling sales people need access to network-based resources. Remote LAN access, or remote

access, is a popular way to provide this connectivity. Access servers use telephone services to link a user or office with an office network. Dial-up remote access solutions such as ISDN or asynchronous dial introduce more flexibility. Dial-up remote access offers both the remote office and the remote user the economy and flexibility of "pay as you go" telephone services. ISDN is a special telephone service that offers three channels, two 64 Kbps "B" channels for user data and a "D" channel for setting up the connection. With ISDN, the B channels can be combined for double bandwidth or separated for different applications or users. With asynchronous remote access, regular telephone lines are combined with modems and remote access servers to allow users and networks to dial anywhere in the world and have data access. Remote access servers provide connection points for both dial-in and dial-out applications on the network to which they are attached. These hybrid devices route and filter protocols and offer other services such as modem pooling and terminal/printer services. For the remote PC user, one can connect from any available telephone jack (RJ45), including those in a hotel rooms or on most airplanes.

Network Time Servers

A network time server is a server specialized in the handling of timing information from sources such as satellites or radio broadcasts and is capable of providing this timing data to its attached network. Specialized protocols such as NTP or udp/time allow a time server to communicate to other network nodes ensuring that activities that must be coordinated according to their time of execution are synchronized correctly. GPS satellites are one source of information that can allow global installations to achieve constant timing.

IP Addressing:

An IP (Internet Protocol) address is a unique identifier for a node or host connection on an IP network. An IP address is a 32 bit binary number usually represented as 4 decimal values, each representing 8 bits, in the range 0 to 255 (known as octets) separated by decimal points. This is known as "dotted decimal" notation.

Example: 140.179.220.200

It is sometimes useful to view the values in their binary form.

140 .179 .220 .200

10001100.10110011.11011100.11001000

Every IP address consists of two parts, one identifying the network and one identifying the node. The Class of the address and the subnet mask determine which part belongs to the network address and which part belongs to the node address.

Address Classes:

There are 5 different address classes. You can determine which class any IP address is in by examining the first 4 bits of the IP address.

Class A addresses begin with 0xxx, or 1 to 126 decimal.

Class B addresses begin with 10xx, or 128 to 191 decimal.

Class C addresses begin with 110x, or 192 to 223 decimal.

Class D addresses begin with 1110, or 224 to 239 decimal.

Class E addresses begin with 1111, or 240 to 254 decimal.

Addresses beginning with 01111111, or 127 decimal, are reserved for loopback and for internal testing on a local machine. [You can test this: you should always be able to ping 127.0.0.1, which points to yourself] Class D addresses are reserved for multicasting. Class E addresses are reserved for future use. They should not be used for host addresses.

Now we can see how the Class determines, by default, which part of the IP address belongs to the network (N) and which part belongs to the node (n).

Class A -- NNNNNNN.nnnnnnnnnnnnnnn

Class B -- NNNNNNNNNNNNNNNNnnnnnnnnn

Class C -- NNNNNNNNNNNNNNNNNNNNNNNN

In the example, 140.179.220.200 is a Class B address so by default the Network part of the address (also known as the Network Address) is defined by the first two octets (140.179.x.x) and the node part is defined by the last 2 octets (x.x.220.200).

In order to specify the network address for a given IP address, the node section is set to all "0"s. In our example, 140.179.0.0 specifies the network address for 140.179.220.200. When the node section is set to all "1"s, it specifies a broadcast that is sent to all hosts on the network. 140.179.255.255 specifies the example broadcast address. Note that this is true regardless of the length of the node section.

Private Subnets:

There are three IP network addresses reserved for private networks. The addresses are 10.0.0.0/8, 172.16.0.0/12, and 192.168.0.0/16. They can be used by anyone setting up internal IP networks, such as a lab or home LAN behind a NAT or proxy server or a router. It is always safe to use these because routers on the Internet will never forward packets coming from these addresses

Subnetting an IP Network can be done for a variety of reasons, including organization, use of different physical media (such as Ethernet, FDDI, WAN, etc.), preservation of address space, and security. The most common reason is to control network traffic. In an Ethernet network, all nodes on a segment see all the packets transmitted by all the other nodes on that segment. Performance can be adversely affected under heavy traffic loads, due to collisions and the resulting retransmissions. A router is used to connect IP networks to minimize the amount of traffic each segment must receive.

Subnet Masking

Applying a subnet mask to an IP address allows you to identify the network and node parts of the address. The network bits are represented by the 1s in the mask, and the node bits are represented by the 0s. Performing a bitwise logical AND operation between the IP address and the subnet mask results in the Network Address or Number.

For example, using our test IP address and the default Class B subnet mask, we get:

10001100.10110011.11110000.11001000 140.179.240.200 Class B IP Address

10001100.10110011.00000000.00000000 140.179.000.000 Network Address

Default subnet masks:

Class A - 255.0.0.0 - 11111111.00000000.0000000.00000000

Class B - 255.255.0.0 - 11111111111111111100000000.00000000

CIDR -- Classless InterDomain Routing.

CIDR was invented several years ago to keep the internet from running out of IP addresses. The "classful" system of allocating IP addresses can be very wasteful; anyone who could reasonably show a need for more that 254 host addresses was given a Class B address block of 65533 host addresses. Even more wasteful were companies and organizations that were allocated Class A address blocks, which contain over 16 Million host addresses! Only a tiny percentage of the allocated Class A and Class B address back has ever been actually assigned to a host computer on the Internet.

People realized that addresses could be conserved if the class system was eliminated. By accurately allocating only the amount of address space that was actually needed, the address space crisis could be avoided for many years. This was first proposed in 1992 as a scheme called Supernetting. The use of a CIDR notated address is the same as for a Classful address. Classful addresses can easily be written in CIDR notation (Class A = /8, Class B = /16, and Class C = /24)

It is currently almost impossible for an individual or company to be allocated their own IP address blocks. You will simply be told to get them from your ISP. The reason for this is the ever-growing size of the internet routing table. Just 5 years ago, there were less than 5000 network routes in the entire Internet. Today, there are over 90,000. Using CIDR, the biggest ISPs are allocated large chunks of address space (usually with a subnet mask of /19 or even smaller); the ISP's customers (often other, smaller ISPs) are then allocated networks from the big ISP's pool. That way, all the big ISP's customers (and their customers, and so on) are accessible via 1 network route on the Internet.

It is expected that CIDR will keep the Internet happily in IP addresses for the next few years at least. After that, IPv6, with 128 bit addresses, will be needed. Under IPv6, even sloppy address allocation would comfortably allow a billion unique IP addresses for every person on earth

Examining your network with commands:

Ping

PING is used to check for a response from another computer on the network. It can tell you a great deal of information about the status of the network and the computers you are communicating with.

Ping returns different responses depending on the computer in question. The responses are similar depending on the options used.

Ping uses IP to request a response from the host. It does not use TCP

.It takes its name from a submarine sonar search - you send a short sound burst and listen for an echo - a ping - coming back.

In an IP network, `ping' sends a short data burst - a single packet - and listens for a single packet in reply. Since this tests the most basic function of an IP network (delivery of single packet), it's easy to see how you can learn a lot from some `pings'.

To stop ping, type control-c. This terminates the program and prints out a nice summary of the number of packets transmitted, the number received, and the percentage of packets lost, plus the minimum, average, and maximum round-trip times of the packets.

Sample ping session

PING localhost (127.0.0.1): 56 data bytes 64 bytes from 127.0.0.1: icmp_seq=0 ttl=255 time=2 ms 64 bytes from 127.0.0.1: icmp_seq=1 ttl=255 time=2 ms 64 bytes from 127.0.0.1: icmp_seq=2 ttl=255 time=2 ms 64 bytes from 127.0.0.1: icmp_seq=3 ttl=255 time=2 ms 64 bytes from 127.0.0.1: icmp_seq=4 ttl=255 time=2 ms 64 bytes from 127.0.0.1: icmp_seq=5 ttl=255 time=2 ms 64 bytes from 127.0.0.1: icmp_seq=6 ttl=255 time=2 ms 64 bytes from 127.0.0.1: icmp_seq=7 ttl=255 time=2 ms 64 bytes from 127.0.0.1: icmp_seq=8 ttl=255 time=2 ms

localhost ping statistics

10 packets transmitted, 10 packets received, 0% packet loss round-trip min/avg/max = 2/2/2 ms meikro\$

The Time To Live (TTL) field can be interesting. The main purpose of this is so that a packet doesn't live forever on the network and will eventually die when it is deemed "lost." But for us, it provides additional information. We can use the TTL to determine approximately how many router hops the packet has gone through. In this case it's 255 minus N hops, where N is the TTL of the returning Echo Replies. If the TTL field varies in successive pings, it could indicate that the successive reply packets are going via different routes, which isn't a great thing.

The time field is an indication of the round-trip time to get a packet to the remote host. The reply is measured in milliseconds. In general, it's best if round-trip times are under 200 milliseconds. The time it takes a packet to reach its destination is called latency. If you see a large variance in the round-trip times (which is called "jitter"), you are going to see poor performance talking to the host

NSLOOKUP

NSLOOKUP is an application that facilitates looking up hostnames on the network. It can reveal the IP address of a host or, using the IP address, return the host name.

It is very important when troubleshooting problems on a network that you can verify the components of the networking process. Nslookup allows this by revealing details within the infrastructure.

NETSTAT

NETSTAT is used to look up the various active connections within a computer. It is helpful to understand what computers or networks you are connected to. This allows you to further investigate problems. One host may be responding well but another may be less responsive.

IPconfig

This is a Microsoft windows NT, 2000 command. It is very useful in determining what could be wrong with a network.

This command when used with the /all switch, reveal enormous amounts of troubleshooting information within the system.

Windows 2000 IP Configuration

Host Name : cowder

Primary DNS Suffix : Node Type Broadcast IP Routing Enabled. : No WINS Proxy Enabled. : No WINS Proxy Enabled. : No Connection-specific DNS Suffix . : Description : WAN (PPP/SLIP) Interface Physical Address. : 00-53-45-00-00-00 DHCP Enabled. : No IP Address. : 12.90.108.123 Subnet Mask : 255.255.255 Default Gateway : 12.90.108.125 DNS Servers : 12.102.244.2 204.127.129.2

Traceroute

Traceroute on Unix and Linux (or tracert in the Microsoft world) attempts to trace the current network path to a destination. Here is an example of a traceroute run to <u>www.cumbuco-car-rental.com</u>:

\$ traceroute www.cumbuco-car-rental.com

traceroute to amber.www.cumbuco-car-rental.com (128.32.25.12), 30 hops max, 40 byte packets

1 sf1-e3.wired.net (206.221.193.1) 3.135 ms 3.021 ms 3.616 ms

2 sf0-e2s2.wired.net (205.227.206.33) 1.829 ms 3.886 ms 2.772 ms

3 paloalto-cr10.bbnplanet.net (131.119.26.105) 5.327 ms 4.597 ms 5.729 ms

4 paloalto-br1.bbnplanet.net (131.119.0.193) 4.842 ms 4.615 ms 3.425 ms

5 sl-sj-2.sprintlink.net (4.0.1.66) 7.488 ms 38.804 ms 7.708 ms

6 144.232.8.81 (144.232.8.81) 6.560 ms 6.631 ms 6.565 ms

7 144.232.4.97 (144.232.4.97) 7.638 ms 7.948 ms 8.129 ms

8 144.228.146.50 (144.228.146.50) 9.504 ms 12.684 ms 16.648 ms

9 f5-0.inr-666-eva.cumbuco-car-rental.com (198.128.16.21) 9.762 ms 10.611 ms 10.403 ms

10 f0-0.inr-107-eva.cumbuco-car-rental.com (128.32.2.1) 11.478 ms 10.868 ms 9.367 ms

11 f8-0.inr-100-eva.cumbuco-car-rental.com (128.32.235.100) 10.738 ms 11.693 ms 12.520 ms