AIEEE Chemistry Model Test with Solutions

1. With a certain radiation (exciting) of a particular frequency, to which hydrogen atoms are exposed, the maximum number of spectral lines is obtainable in the emission is 15 . The uppermost energy level to which the is excited is $\mathrm{n}=$
1) 4
2) 5
3) 6
4) 7

Ans: 3
Sol. Number of spectral lines

$$
\frac{n(n-1)}{2}=15 \Rightarrow n=6
$$

2. The number of moles of KMnO_{4} that will be required to react with one mole of ferrous oxalate is
1) $\frac{3}{5}$
2) $\frac{2}{5}$
3) $\frac{4}{5}$
4) 1

Ans: 1
Sol. $\mathrm{Mn}^{2+}+5 e^{-} \rightarrow \mathrm{Mn}^{2+} \mathrm{J} \times 3$

$$
\left.\begin{array}{rl}
\mathrm{Fe}^{2-} & \rightarrow \mathrm{Fe}^{3+}+e^{-} \\
\mathrm{C}_{2} \mathrm{O}_{4}^{2-} & \rightarrow 2 \mathrm{CO}_{2}+2 e^{-}
\end{array}\right] \times 5
$$

3 moles of $\mathrm{KMnO}_{4}=5$ moles of $\mathrm{FeC}_{2} \mathrm{O}_{4}$
$\therefore 1 \mathrm{~mol}$ of ferrous oxalate $=\frac{3}{5} \mathrm{~mol}$ of

$$
\mathrm{KMnO}_{4}
$$

3. The sealed containers of the same capac-ity and at the same temperature are filled with 44 g of H_{2} in one and 44 g of CO_{2} in the other. If the pressure of carbondioxide in the second container is 1 atm . That of hydrogen in the first container would be
1) 1 atm
2) 10 atm
3) 22 atm
4) 44 atm

Ans: 3
Sol.
$\frac{P_{1} V_{1}}{P_{2} V_{2}}=\frac{n_{1} R T_{1}}{n_{2} R T_{2}}=\frac{n_{1} T_{1}}{n_{2} T_{2}}$
As $\mathrm{V}_{2}=\mathrm{V}_{2}$ and $\mathrm{T}_{1}=\mathrm{T}_{2}$
$\frac{P_{1}}{P_{2}}=\frac{n_{1}}{n_{2}}$
$\frac{P_{\mathrm{H}_{2}}}{P_{\mathrm{CO}_{2}}}=\frac{n_{\mathrm{H}_{2}}}{n_{\mathrm{CO}_{2}}}$
$\frac{P_{H_{2}}}{1}=\frac{44 / 2}{44 / 44}=22 \mathrm{~atm}$
Hence 3 is the correct answer
4. Half life of a reaction becomes half when initial concentration of reactants are made doubled. The order of the reaction will be

1) 1
2) 2
3) 0
4) 3

Ans: 2
Sol. $t_{1 / 2} \propto \frac{1}{a^{n-1}}$

$$
t_{1 / 2} \propto \frac{1}{a}
$$

Where $\mathrm{n}=$ order of reaction for second order reaction
Hence 2 is correct answer
5. The reaction $\mathrm{A} \xrightarrow{\mathrm{k}}$ Product, is zero order while the reaction $\mathrm{B} \xrightarrow{\mathrm{k}}$ Product, is first order reaction. For what initial concentration of A are the half lives of the two reactions equal (Rate constant value are same for both two reaction)

1) $\left(\log _{e} 4\right)$
2) 2 M
3) $\log 2 \mathrm{M}$
4) $\ln 2 \mathrm{M}$

Ans: 1
Sol. For zero order reaction, $\mathrm{x}=\mathrm{kt}$

$$
\begin{equation*}
\therefore \frac{a}{2} \times k \times t_{1 / 2} \quad \text {, i.e } t_{1 / 2}=\frac{a}{2 k} \tag{i}
\end{equation*}
$$

For first order reaction, $t_{1 / 2}=\frac{\log _{e} 2}{k} \ldots$ (ii)
From (i) and (ii), $\frac{a}{2 k}=\frac{\log _{e} 2}{k}$
$a=\log _{e} 4 M$
Hence 1 is the correct answer
6. The dissociation of phosgene, which occurs according to the reaction $\mathrm{COCl}_{2}(\mathrm{~g}) \quad \mathrm{CO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})$
is an endothermic process. Which of the following will increase the degree of dissociation of COCl_{2} ?

1) Adding Cl_{2} to the system
2) Adding helium to the system at constant pressure
3) Decreasing the temperature of the system
4) Increasing the total pressure

Ans: 2

7. Which of the following compounds/ions can act as Bronsted acid as well as a Bronsted base ?
1) HCO_{3}^{-}
2) $\mathrm{K}_{2} \mathrm{CO}_{3}$
3) $\mathrm{H}_{2} \mathrm{SO}_{4}$
4) $\mathrm{H}_{2} \mathrm{PO}_{2}^{-}$
Ans: 1
8. Calculate the standard Gibbs free energy change in kJ for the reaction
$\mathrm{Cu}^{-}(a q)+\mathrm{I}^{-}(a q) \longrightarrow C u I$
(or)
Given:
$C u I(o r)+e \rightarrow C u(o r)+I^{-}(a q) E^{O}=-0.17 v$
$\mathrm{Cu}^{+}(a q)+e \longrightarrow \mathrm{Cu}($ or $) E^{\circ}=0.53 \mathrm{~V}$
1) -67.55
2) 135.1
3) 1.78 V
4) -1.75 V

Ans: 1
Sol. $\mathrm{CuI}($ or $)+e \longrightarrow C u(o r)+I^{-}(a q)$
$\Delta G_{1}^{o}=-1 \times F \times(-0.17 \mathrm{~V})$
$\mathrm{Cu}^{+}(a q)+e \longrightarrow \mathrm{Cu}($ or $) E^{\circ}=0.53 \mathrm{~V}$
$\Delta G_{2}^{o}=-1 \times F \times(0.53 \mathrm{~V})=-0.53 \mathrm{~V}$
The $\Delta G^{o}=\Delta G_{2}^{o}-\Delta G_{1}^{o}$
$=-0.53 \mathrm{~F}-90.17 \mathrm{~F})=-0.70 \mathrm{~F}$
$=-0.70 \mathrm{X} 96500 \mathrm{~J}--67550 \mathrm{~J}$
$=-67.55 k J$
Hence 1 is correct answer
9. In a solid AB^{+}having NaCl structure atoms B^{-}occupy the corners of the unit cell. If all the face centred atoms along one of the axis are removed, then the resultant stoichiometry of the solid is

1) $A B_{2}$
2) $A_{2} B$
3) $A_{4} B_{3}$
4) AB_{4}

Ans: 3
Sol. In one NaCl type unit cell of solid, B^{-}are present at corners and face centres and A^{+}are present at edge centres and body centre. Thus, a unit cell will contain $4 \mathrm{~A}^{+}$and $4 \mathrm{~B}^{-}$ions. In this unit two face centred ions B^{-}lies along the one axis and are removed Contribution of two face centred B^{-}ions
$=2 \times \frac{1}{2}=1$
In the resultant unit cell;
\therefore Number of A^{+}ions present per unit cell $=4$
\therefore Number of B^{-}ions present per unit cell $=4-1=3$
\therefore Stoichiometry $=\mathrm{A}_{4} \mathrm{~B}_{3}$.
Hence, (C) is the correct answer
10. The van't Hoff factor for $0.1 \mathrm{M} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ solution is 2.74 . The percentage of dissociation is:

1) 91.3%
2) 87%
3) 100%
4) 74%

Ans: 2
Sol. $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2} \quad \mathrm{Ba}^{2}+2 \mathrm{NO}_{3}^{-}$

$$
\begin{aligned}
& \quad \begin{array}{l}
1 \\
\\
\\
i=1-\alpha) \\
i=(1-\alpha) \\
\mathrm{i}=(1+2 \alpha) \\
\therefore \alpha=
\end{array} \\
& \therefore \alpha=\frac{(i-i)}{2}=\frac{2 \alpha}{2}=(1+2 \alpha) \\
& =87 \%
\end{aligned}
$$

Hence, (B) is the correct answer
11.The correct match is

	A	B	C	D		A	B	C	D
1)	s	r	q	p	2)	s	p	q	r
3)	p	r	s	q	4)	q	r	s	p

Ans: 1
Sol. $(A) \rightarrow(s)$: Hess's law states that enthalpy change in a reaction remains the same whether the reaction takes place in one step or in several steps
$(B) \rightarrow(r)$: Combustion reactions are exothermic
$(D) \rightarrow(p): 2.303 \log \frac{p_{2}}{p_{1}}=\frac{\Delta H_{\text {vap }}}{R}\left(\frac{T_{2}-T_{1}}{T_{1} T_{2}}\right)$
It is an example of Clasius Clapeyron equation
12. The pair of species having identical shape is

1) $\mathrm{CF}_{4}, \mathrm{SF}_{4}$
2) $\mathrm{PCl}_{3}, \mathrm{BF}_{3}$
3) $\mathrm{XeF}_{2}, \mathrm{CO}_{2}$
4) $\mathrm{PF}_{5}, \mathrm{IF}_{5}$

Ans: 3
Sol. XeF_{2} and CO_{2} are linear molecules
Hence 3 is the correct answer
13. Nitrobenzene can be prepared from benz-ene by using a mixture of conc. HNO_{3} and conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$. In the nitrating mixture HNO_{3} acts as a

1) base
2) acid
3) reducing agent
4) catalyst

Ans: 1
Sol. HNO_{3} accepts a proton from $\mathrm{H}_{2} \mathrm{SO}_{4}$
$\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{HNO}_{3}$

Hence 1 is the correct answer
14. Which of the following will give yellow precipitate with $\mathrm{I}_{2} / \mathrm{NaOH}$?

1) $\mathrm{CH}_{3}-\mathrm{CO}-\mathrm{O}-\mathrm{CO}-\mathrm{CH}_{3}$
2) $\xlongequal[\mathrm{I}-\mathrm{CH}_{2}-\stackrel{\mathrm{O}}{\mathrm{C}}-\mathrm{CH}_{2}-\mathrm{CH}_{3}]{ }$
3) $\mathrm{CH}_{3}-\mathrm{CO}-\mathrm{NH}_{2}$
4) $\stackrel{\mathrm{O}}{\|} \mathrm{CH}_{3}-\mathrm{C}-\mathrm{Cl}$

Ans: 2
Sol. $\mathrm{ICH}_{2}-\mathrm{CO}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$ on further treatme-nt with $\mathrm{I}_{2} / \mathrm{NaOH}$ first give $\mathrm{I}_{2} \mathrm{CHCOCH}_{2} \mathrm{CH}_{3}$ and then $\mathrm{I}_{3} \mathrm{C}-\mathrm{CO}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$ which subsequently undergo-es hydrolysis with NaOH to yield CHI_{3} and $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{COONa}$
Hence, 2 is the correct answer
15. In Cannizzaro reaction given below
$\mathrm{Ph}-\mathrm{CHO} \xrightarrow{\mathrm{OH}^{-}} \mathrm{Ph}-\mathrm{CH}_{2}-\mathrm{OH}+\mathrm{PhCOO}^{-}$
The slowest step is

1) the attack of OH^{-}at the carbonyl group
2) the transfer of hydride to the carbonyl group
3) the abstraction of proton from carboxylic acid
4) the deprotonation of $\mathrm{Ph}-\mathrm{COOH}$.
16. Consider the following pairs of organic compounds

I:

$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
II: $\mathrm{CH}_{3} \mathrm{OH}$
HCHO
III:

A test that can make distinction between each pair is

1) Lucas test
2) Silver-mirror test
3) Victor - Meyer's test 4) Iodoform test Ans: 4
17. In the following compounds, the order of acidity is
I)

II)

III)

IV)

1) III $>$ IV $>$ I $>$ II
2) I $>$ IV $>$ III >1
3) II $>$ I $>$ III $>$ IV
4) IV $>$ III $>$ I $>$ II

Ans: 4

Sol. +1 effect decreases acidity, -I and -R ef-fect increases acidity.
NO_{2} group cannot exert -R effect from the metal position.
Hence 4 is the correct answer
18. The equilibrium constant for the reaction

$$
2 \mathrm{SO}_{2(g)}+\mathrm{O}_{2(g)} \quad 2 \mathrm{SO}_{3(g)}
$$

is 5 . If the equilibrium mixture contains equal moles of SO_{3} and SO_{2}, the equilibr-ium partial pressure of O_{2} gas is

1) 0.2 atm
2) 2 atm
3) 0.02 atm
4) 0.04 atm

Ans: 1
Sol. $\quad K_{p}=\frac{P_{\mathrm{SO}_{3}}{ }^{2}}{P_{\mathrm{SO}_{2}}{ }^{2} \cdot P_{O_{2}}}$;

$$
\begin{aligned}
& \text { As } n_{\mathrm{SO}_{3}}=n_{\mathrm{SO}_{2}}, P_{\mathrm{SO}_{3}}=P_{\mathrm{SO}_{2}} \text { and } K_{p}=\text { hence } 5=\frac{1}{P_{O_{2}}} \\
& P_{O_{2}}=0.2 \mathrm{~atm}
\end{aligned}
$$

19. In $\mathrm{P}_{4} \mathrm{O}_{10}$, the number of oxygen atoms attached to each phosphorous atom is
1) 3
2) 2
3) 4
4) 2.5

Ans: 3
20. The dipole moment of

1) 0 D
2) 1.5 D
3) 2.86 D
4) 2.25 D

Ans: 2

21. Argentite a compound of silver, was treated with potassium
cyanide solution. The product obtained has the formula
1) $\mathrm{K}\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]$
2) $\mathrm{K}_{2}\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]$
3) $\mathrm{K}_{2}\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]$
4) $K\left[\mathrm{Ag}(\mathrm{CN})_{4}\right]$

Ans: 1
22. Statement-1: In acidic medium, Zn^{+2} is not precipitated by S^{2-} ions
Statement-2 : Common ion effect reduces the concentration of S^{2-} ions to the minimum level

1) Statement- 1 is true, statement- 2 is true, statement- 2 is a correct explanation for statement-1
2) Statement- 1 is true, statement- 2 is true, statement- 2 is not a correct explanation for statement -1
3) Statement- 1 is true,statement- 2 is false
4) Statement- 1 is false, statement- 2 is true

Ans: 1

23. Select the correct order of acidity
1) $\mathrm{HI}>\mathrm{HBr}>\mathrm{HCl}>\mathrm{HF}$
2) $\mathrm{HClO}_{4}<\mathrm{HBrO}_{4}<\mathrm{HlO}_{4}$
3) $\mathrm{HClO}<\mathrm{HBrO}<\mathrm{HIO}$
4) $\mathrm{HClO}_{4}>\mathrm{HClO}_{3}>\mathrm{HClO}_{2}>\mathrm{HClO}$

Ans: 1
24. The process of getting fresh water from sea water is known as

1) osmosis
2) filtration
3) desaltation

A5s: 1

The ratio of number of moles of hydrogen atoms required to get 1 mole of A and 1 mole of B is

1) $4: 5$
2) $5: 4$
3) $1: 1$
4) $2: 3$

Ans: 1

Sol. A=Azobenzene, B=Hydrazobenzene
26. Which of the following polymers are obtained by step growth polymerization?
A) Nylon 6,6
B) neoprene
C) PVC
D) Terylene

1) A, B
2) B, C
3) A, C
4) A, D

Ans: 4
27. Incorrect match in the following

1) Molecular oxygen: Diamagnetic
2) Order of stability: $\mathrm{O}_{2}^{+}>\mathrm{O}_{2}>\mathrm{O}_{2}^{-}>\mathrm{O}_{2}^{-2}$
3) Order of bond orders:

$$
\mathrm{N}_{2}>\mathrm{N}_{2}^{+}=\mathrm{N}_{2}^{-}>\mathrm{N}_{2}^{-2}
$$

4) S.I. unit of dipole moment:

Coloumb - metre
Ans: 1
28. Ethanal reacts with HCN and the addition product so obtained is hydrolysed to form a new compound. This compound shows

1) Optical isomerism
2) Geometrical isomerism
3) Tautomerism
4) Metamerism

Ans: 1
Sol. The new compound formed is Latic acid

