CHEMISTRY

Atomic numbers: $\mathrm{Mn}=25, \mathrm{Fe}=26, \mathrm{Co}=27, \mathrm{Ni}=28$
Atomic masses: $\mathrm{C}=12, \mathrm{O}=16, \mathrm{Cl}=35.5, \mathrm{~K}=39, \mathrm{Mn}=55$
Universal gas constant, $\mathrm{R}=0.0821 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
81. The bond order in NO is 2.5 while that in NO^{+}is 3 . Which of the following statements is true for these two species?
(a) Bond length in NO^{+}is greater than in NO
(b) Bond length is unpredictable
(c) Bond length in NO^{+}is equal to that in NO
(d) Bond length in NO is greater than in NO^{+}
82. Which one of the following has the regular tetrahedral structure?
(a) XeF_{4}
(b) $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$
(c) BF_{4}^{-}
(d) SF_{4}
83. For the reaction, $\mathrm{CO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{COCl}_{2}(\mathrm{~g})$ the $\frac{\mathrm{K}_{\mathrm{p}}}{\mathrm{K}_{\mathrm{C}}}$ is equal to
(a) $\frac{1}{\mathrm{RT}}$
(b) 1.0
(c) $\sqrt{\mathrm{RT}}$
(d) RT
84. Excess of KI reacts with CuSO_{4} solution and then $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution is added to it. Which of the statements is incorrect for this reaction?
(a) $\mathrm{Cu}_{2} \mathrm{I}_{2}$ is formed
(b) Evolved I_{2} is reduced
(c) $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ is oxidised
(d) CuI_{2} is formed
85. Which one of the following complexes is an outer orbital complex?
(a) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$
(b) $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$
(c) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
(d) $\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]^{4-}$

Space for rough work

86. The IUPAC name of the compound

is
(a) 3,3-dimethyl-1-hydroxy cyclohexane
(b) 1,1-dimethyl-3-cyclohexanol
(c) 3,3-dimethyl-1- cyclohexanol
(d) 1,1-dimethyl-3-hydroxy cyclohexane
87. Consider the acidity of the carboxylic acids.
(I) PhCOOH
(II) $\mathrm{o}-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{COOH}$
(III) $\mathrm{p}-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{COOH}$
(IV) $\mathrm{m}-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{COOH}$

Which of the following order is correct?
(a) (I) $>$ (II) $>$ (III) $>$ (IV)
(b) (II) $>$ (III) $>$ (IV) $>$ (I)
(c) (II) $>$ (IV) $>$ (I) $>$ (III)
(d) (II) $>$ (IV) $>$ (III) $>$ (I)
88. The quantum numbers $+1 / 2$ and $-1 / 2$ for the electron spin represent
(a) rotation of the electron in clockwise and anticlockwise direction respectively
(b) rotation of the electron in anticlockwise and clockwise direction respectively
(c) magnetic moment of the electron pointing up and down respectively
(d) two quantum mechanical spin states which have no classical analogue
89. The equivalent weight of an element is 29.4. The electrochemical equivalent of this element is
(a) 3.04×10^{-4}
(b) 4.56×10^{-4}
(b) 6.08×10^{-4}
(d) 1.52×10^{-4}
90. The number of $\mathrm{O}-\mathrm{O}$ bonds in $\left(\mathrm{CrO}_{5}\right)$ is
(a) three
(b) two
(c) one
(d) zero
91.

Identify the compound (X).
(a) $\mathrm{CH}_{3} \mathrm{COOH}$
(b) $\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$
(c) $\mathrm{BrCH}_{2} \mathrm{COOH}$
(d) $\mathrm{CHO}-\mathrm{COOH}$

Space for rough work

92. The order of reactivity of the following compounds with PhMgBr is
(I) PhCOPh
(a) (I) $>$ (II) $>$ (III)
(II) $\mathrm{CH}_{3} \mathrm{CHO}$
(c) (II) $>$ (I) $>$ (III)
93. Which of the following compound will not give a positive iodoform test?
(a)

(b)

(c)

(d)

94. The appropriate reagent for the following transformation is

(a) $\mathrm{Zn}-\mathrm{Hg}, \mathrm{HCl}$
(b) $\mathrm{NH}_{2} \mathrm{NH}_{2}, \mathrm{KOH}$
(c) LiAlH_{4}
(d) $\mathrm{HI}, \mathrm{P}_{4}$
95. Which of the following dicarboxylic acid gives cyclic ketone on heating?
(a) $\mathrm{CH}_{2}(\mathrm{COOH})_{2}$
(b) $\underset{\stackrel{C}{\mathrm{C}} \mathrm{CH}_{2} \mathrm{COOH}}{2} \mathrm{COOH}$
(c) $\mathrm{HOOC}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{COOH}$
(d) $\mathrm{HOOC}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{COOH}$
96. For a hypothetical reaction, $\mathrm{A}+\mathrm{B} \longrightarrow \mathrm{C}+\mathrm{D}$, the rate $=\mathrm{k}[\mathrm{A}]^{-1 / 2}[\mathrm{~B}]^{3 / 2}$. On doubling the concentration of A and B , the rate will be (assume that the concentration of $\mathrm{A} \& \mathrm{~B}$ initially were same)
(a) 4 times
(b) 2 times
(c) 3 times
(d) none of these

Space for rough work

97. If the equilibrium constant for the reaction,

$$
2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightleftharpoons 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

is $x \mathrm{M}^{-3}$. The equilibrium constant for the reaction

$$
2 \mathrm{NO}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \text { is }
$$

(a) \sqrt{x}
(b) $\sqrt{x^{-1}}$
(c) x^{2}
(d)
98. For the combustion reaction at 298 K ,

$$
2 \mathrm{Ag}(\mathrm{~s})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{Ag}_{2} \mathrm{O}(\mathrm{~s})
$$

which of the following relation will be true?
(a) $\Delta \mathrm{H}=\Delta \mathrm{U}$
(b) $\Delta \mathrm{H}>\Delta \mathrm{U}$
(c) $\Delta \mathrm{H}<\Delta \mathrm{U}$
(d) $\Delta \mathrm{H}$ and $\Delta \mathrm{U}$ bear no relation with each other
99. For which of the following equation, will $\Delta \mathrm{H}$ be equal to $\Delta \mathrm{U}$?
(a) $\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(l)$
(b) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{HI}(\mathrm{g})$
(c) $2 \mathrm{NO}_{2}(\mathrm{~g}) \longrightarrow \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$
(d) $4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g})$
100. For a system, $\mathrm{A}(\mathrm{g})+2 \mathrm{~B}(\mathrm{~g}) \rightleftharpoons 3 \mathrm{C}(\mathrm{g})+\mathrm{D}(\mathrm{g})$ at equilibrium, if volume is doubled, the reaction shifts in
(a) forward direction
(b) backward direction
(c) equilibrium will not be disturbed
(d) none of these
101. The degree of dissociation for a reaction, $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$ is 0.01 . What would be K_{c} for the reaction assuming initial concentration of $\mathrm{N}_{2} \mathrm{O}_{4}$ is 1 M .
(a) $0.4 \times 10^{-3} \mathrm{M}$
(b) $0.5 \times 10^{-3} \mathrm{M}$
(c) $0.3 \times 10^{-3} \mathrm{M}$
(d) $0.2 \times 10^{-3} \mathrm{M}$
102. When a poly atomic gas undergoes an adiabatic expansion, its temperature and volume are related by the equation $\mathrm{TV}^{\mathrm{n}}=$ constant, the value of n will be
(a) 1.33
(b) 0.33
(c) 2.33
(d) 1

Space for rough work

103. Concentration of NaOH at $25^{\circ} \mathrm{C}$ is $10^{-3} \mathrm{M} . \mathrm{pH}$ at this temperature is
(a) 7
(b) 8
(c) 9
(d) 11
104. In a mixture of two volatile liquids A and B, the mole fraction of A is 0.4 . What would be the mole fraction of A in the vapour phase if the vapour pressure of pure components are given as $P_{A}^{0}=100 \mathrm{~mm} \mathrm{Hg}$ and $\mathrm{P}_{\mathrm{B}}^{0}=100 \mathrm{~mm} \mathrm{Hg}$.
(a) 0.4
(b) 0.6
(c) 0.25
(d) none of these
105. The molal depression constant for water is $1.86 \mathrm{~K} \mathrm{~kg} / \mathrm{mol}$. What will be, the freezing point of 0.1 M KCl in water assuming molality is same as molarity?
(a) $+1.86^{\circ} \mathrm{C}$
(b) $-0.186^{\circ} \mathrm{C}$
(c) $-0.372^{\circ} \mathrm{C}$
(d) $-0.093^{\circ} \mathrm{C}$
106. If the anions (A) form hexagonal closed packing and cations (C) occupy only $2 / 3$ of the octahedral voids in it, then the general formula of the compound would be
(a) CA
(b) CA_{2}
(c) $\mathrm{C}_{2} \mathrm{~A}_{3}$
(d) $\mathrm{C}_{3} \mathrm{~A}_{2}$
107. A solid has a structure in which tungsten (W) atoms are located at the corners of a cubic lattice, O atoms at the center of edges and Na atom at the center of cube. The formula for the compound is
(a) NaWO_{2}
(b) NaWO_{3}
(c) $\mathrm{Na}_{2} \mathrm{WO}_{3}$
(d) NaWO_{4}
108. The amount of KMnO_{4} required to prepare 100 ml of 0.1 N solution in alkaline medium when KMnO_{4} is reduced to $\mathrm{K}_{2} \mathrm{MnO}_{4}$ is
(a) 1.58 g
(b) 0.52 g
(c) 3.16 g
(d) 0.31 g
109. In Bohr's hydrogen atom, the electronic transition emitting light of longest wavelength among the following is
(a) $\mathrm{n}=5$ to $\mathrm{n}=4$
(b) $\mathrm{n}=4$ to $\mathrm{n}=3$
(c) $\mathrm{n}=3$ to $\mathrm{n}=2$
(d) $\mathrm{n}=4$ to $\mathrm{n}=2$

Space for rough work

110. If E_{1}, E_{2} and E_{3} represent respectively the kinetic energies of an electron, α-particle and a proton, each having same de-Broglie's wave length, then
(a) $\mathrm{E}_{1}>\mathrm{E}_{3}>\mathrm{E}_{2}$
(b) $E_{2}>E_{3}>E_{1}$
(c) $\mathrm{E}_{1}>\mathrm{E}_{2}>\mathrm{E}_{3}$
(d) $\mathrm{E}_{1}=\mathrm{E}_{2}=\mathrm{E}_{3}$
111. To transform

(a) Nitration followed by Friedel-Crafts alkylation.
(b) Friedel-Crafts alkylation followed by nitration.
(c) Nitration followed by Friedel-Crafts acylation.
(d) Friedel-Crafts acylation followed by Clemmensen's reduction followed by nitration.
112. Which of the following compound is optically active?
(a)

(b)

(c)

(d)

113. Buff coloured precipitate is obtained when FeCl_{3} is treated with
(a)

(b)

(c)

(d)

Space for rough work

114. Hydration of
 in presence of $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{HgSO}_{4}$ gives
(a)

(b)

(c)

(d)

115. The standard heat of formation values of $\mathrm{SF}_{6}(\mathrm{~g}), \mathrm{S}(\mathrm{g})$ and $\mathrm{F}(\mathrm{g})$ are: $-1100,275$ and 80 kJ mol^{-1} respectively. Then the average $\mathrm{S}-\mathrm{F}$ bond energy in SF_{6} would be
(a) $301 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(b) $320 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(c) $309 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(d) $280 \mathrm{~kJ} \mathrm{~mol}^{-1}$
116. The oxidation of oxalic acid by acidified KMnO_{4} becomes fast as the reaction progresses due to:
(a) auto catalysis by Mn^{+2}
(b) presence of SO_{4}^{-2}
(c) presence of K^{+}
(d) presence of MnO_{4}^{-}
117. Which of the following is/are diamagnetic?
(i) $\mathrm{Ni}(\mathrm{CO})_{4}$
(ii) $\left[\mathrm{NiCl}_{4}\right]^{2-}$
(iii) $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$
(iv) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2}$
(a) (i) only
(b) (ii) only
(c) (i) and (iii) only
(d) (iv) only
118. During the electrolysis of aqueous nitric acid solution using Pt electrodes
(a) O_{2} is liberated at the cathode.
(b) N_{2} is liberated at the anode.
(c) O_{2} is liberated at the anode.
(d) H_{2} is liberated at the anode.
119. Colloidal solution is
(a) true solution.
(b) suspension.
(c) heterogeneous sol.
(d) homogenous sol.
120. To make $\mathrm{E}_{\text {cell }}$ of the following concentration cell positive, what should be the relative concentration of Cl^{-}ions in the two half cells?
$\mathrm{Pt}\left|\mathrm{Cl}_{2}(1 \mathrm{~atm})\right| \mathrm{Cl}^{-}\left(\mathrm{C}_{1}\right) \| \mathrm{Cl}^{-}\left(\mathrm{C}_{2}\right)\left|\mathrm{Cl}_{2}(1 \mathrm{~atm})\right| \mathrm{Pt}$
(a) $\mathrm{C}_{1}>\mathrm{C}_{2}$
(b) $\mathrm{C}_{1}<\mathrm{C}_{2}$
(c) $\mathrm{C}_{1}=\mathrm{C}_{2}$
(d) $\mathrm{E}_{\text {cell }}$ cannot be positive

Space for rough work

