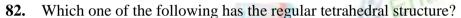
www.myengg.com

CHEMISTRY


Atomic numbers: Mn = 25, Fe = 26, Co = 27, Ni = 28

Atomic masses: C = 12, O = 16, Cl = 35.5, K = 39, Mn = 55

Universal gas constant, $R = 0.0821 \text{ L atm mol}^{-1} \text{ K}^{-1} = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}$

- (a) Bond length in NO⁺ is greater than in NO
- (b) Bond length is unpredictable
- (c) Bond length in NO⁺ is equal to that in NO
- (d) Bond length in NO is greater than in NO⁺

(a) XeF₄

(b) $[Ni(CN)_4]^{2-}$

(c) BF_4

(d) SF₄

83. For the reaction, $CO(g) + Cl_2(g) \Longrightarrow COCl_2(g)$ the $\frac{K_p}{K_C}$ is equal to

(a) $\frac{1}{RT}$

(b) 1.0

(c) \sqrt{RT}

(d) RT

84. Excess of KI reacts with CuSO₄ solution and then Na₂S₂O₃ solution is added to it. Which of the statements is incorrect for this reaction?

(a) Cu₂I₂ is formed

(b) Evolved I₂ is reduced

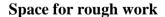
Entrance

(c) $Na_2S_2O_3$ is oxidised

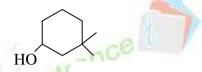
(d) CuI₂ is formed

85. Which one of the following complexes is an outer orbital complex?

(a) $[Fe(CN)_6]^{4-}$


(b) $[Ni(NH_3)_6]^{2+}$

(c) $[Co(NH_3)_6]^{3+}$


(d) $[Mn(CN)_6]^4$

REntre

Entrance

86. The IUPAC name of the compound

is

- (a) 3, 3-dimethyl-1-hydroxy cyclohexane
- (c) 3, 3-dimethyl-1- cyclohexanol
- (b) 1,1-dimethyl-3-cyclohexanol
- (d) 1,1-dimethyl-3-hydroxy cyclohexane

entrance A

- **87.** Consider the acidity of the carboxylic acids.
 - (I) PhCOOH
 - (III) $p NO_2C_6H_4COOH$

Which of the following order is correct?

- (a) (I) > (II) > (III) > (IV)
- (c) (II) > (IV) > (I) > (III)

- (II) $o NO_2C_6H_4COOH$
- $(IV) m NO_2C_6H_4COOH$
- (b) (II) > (III) > (IV) > (I)
- (d) (II) > (IV) > (III) > (I)
- 88. The quantum numbers +1/2 and -1/2 for the electron spin represent
 - (a) rotation of the electron in clockwise and anticlockwise direction respectively
 - (b) rotation of the electron in anticlockwise and clockwise direction respectively
 - (c) magnetic moment of the electron pointing up and down respectively
 - (d) two quantum mechanical spin states which have no classical analogue
- 89. The equivalent weight of an element is 29.4. The electrochemical equivalent of this element is

(a)
$$3.04 \times 10^{-4}$$

(b)
$$4.56 \times 10^{-4}$$

(b)
$$6.08 \times 10^{-4}$$

(d)
$$1.52 \times 10^{-4}$$

- **90.** The number of O–O bonds in (CrO_5) is
 - (a) three

(b) two

(c) one

(d) zero

Identify the compound (X).

Entrance

(a) CH₃COOH

(b) (CH₃CO)₂O

(c) BrCH2COOH

(d) CHO-COOH

Entrance 1

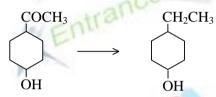
- **92.** The order of reactivity of the following compounds with PhMgBr is
 - (I) PhCOPh
- (II) CH₃CHO
- (III) CH₃COCH₃

(a) (I) > (II) > (III)

 $(b) \quad (III) > (I) > (II)$

(c) (II) > (I) > (III)

- (d) (II) > (III) > (I)
- 93. Which of the following compound will not give a positive iodoform test?
 - (a) CH₃-CH-COOH


OH

(b) CH₃-CH-CH₃

ÓН

(c) C₆H₅-CH-CH₃ OH

- (d) $C_6H_5-C-CH_2I$
- **94.** The appropriate reagent for the following transformation is

(a) Zn-Hg, HCl

(b) NH₂NH₂, KOH

(c) LiAlH₄

- (d) HI, P₄
- **95.** Which of the following dicarboxylic acid gives cyclic ketone on heating?
 - (a) $CH_2(COOH)_2$

 $\begin{array}{cc} & CH_2COOH \\ \text{(b)} & | \end{array}$

CH₂COOH

(c) HOOC(CH₂)₃COOH

Entrance

(d) HOOC(CH₂)₄COOH

Entrance

- **96.** For a hypothetical reaction, $A + B \longrightarrow C + D$, the rate = $k[A]^{-1/2}[B]^{3/2}$. On doubling the concentration of A and B, the rate will be (assume that the concentration of A & B initially were same)
 - (a) 4 times

(b) 2 times

(c) 3 times

(d) none of these

97. If the equilibrium constant for the reaction,

 $2N_2O_5(g) \Longrightarrow 4NO_2(g) + O_2(g)$

is $x \,\mathrm{M}^{-3}$. The equilibrium constant for the reaction

 $2NO_2(g) + \frac{1}{2}O_2(g) \implies N_2O_5(g)$ is

(a) \sqrt{x}

(b) $\sqrt{x^{-1}}$

(c) x^2

- (d) *x*
- **98.** For the combustion reaction at 298 K,

 $2Ag(s) + \frac{1}{2}O_2(g) \longrightarrow 2Ag_2O(s)$

which of the following relation will be true?

- (a) $\Delta H = \Delta U$
- (b) $\Delta H > \Delta U$
- (c) $\Delta H < \Delta U$
- (d) ΔH and ΔU bear no relation with each other
- **99.** For which of the following equation, will ΔH be equal to ΔU ?
 - (a) $H_2(g) + \frac{1}{2}O_2(g) \longrightarrow H_2O(l)$
- (b) $H_2(g) + I_2(g) \longrightarrow 2HI(g)$

(c) $2NO_2(g) \longrightarrow N_2O_4(g)$

(d) $4NO_2(g) + O_2(g) \longrightarrow 2N_2O_5(g)$

Entrance

- **100.** For a system, $A(g) + 2B(g) \Longrightarrow 3C(g) + D(g)$ at equilibrium, if volume is doubled, the reaction shifts in
 - (a) forward direction

- (b) backward direction
- (c) equilibrium will not be disturbed
- (d) none of these
- **101.** The degree of dissociation for a reaction, $N_2O_4(g) \rightleftharpoons 2NO_2(g)$ is 0.01. What would be K_c for the reaction assuming initial concentration of N_2O_4 is 1 M.
 - (a) $0.4 \times 10^{-3} \,\mathrm{M}$

(b) $0.5 \times 10^{-3} \text{ M}$

(c) $0.3 \times 10^{-3} \,\mathrm{M}$

- (d) $0.2 \times 10^{-3} \,\mathrm{M}$
- 102. When a poly atomic gas undergoes an adiabatic expansion, its temperature and volume are related by the equation $TV^n = \text{constant}$, the value of n will be
 - (a) 1.33

(b) 0.33

(c) 2.33

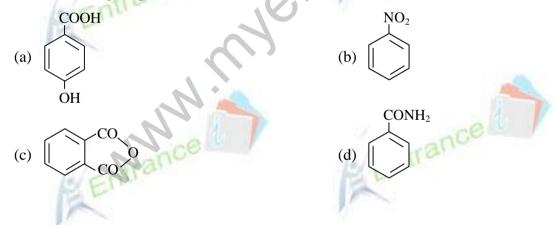
(d) 1

Space for rough work

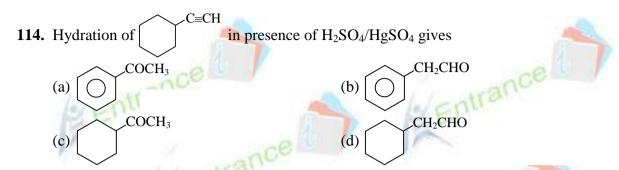
Entrance

103.	Concentration of NaOH at 25°C is 10 ⁻³ M. p	
	(a) 7	(b) 8
	(c) 9	(d) 11
104.	In a mixture of two volatile liquids A and B, the mole fraction of A is 0.4. What would be the mole fraction of A in the vapour phase if the vapour pressure of pure components are given a $P_A^{\circ} = 100 \text{ mm Hg}$ and $P_B^{\circ} = 100 \text{ mm Hg}$.	
	$r_A = 100 \text{ min Fig. and } r_B = 100 \text{ min Fig.}$ (a) 0.4	(b) 0.6
	(a) 0.4 (c) 0.25	(d) none of these
40=	SETTI	- A
105.	The molal depression constant for water is 1 0.1 M KCl in water assuming molality is sar (a) +1.86°C	86 K kg/mol. What will be, the freezing point of ne as molarity? (b) -0.186°C
	(c) -0.372°C	(d) −0.093°C
106.	If the anions (A) form hexagonal closed poctahedral voids in it, then the general form (a) CA (c) C ₂ A ₃	packing and cations (C) occupy only 2/3 of the ala of the compound would be (b) CA ₂ (d) C ₃ A ₂
40=		
107.		 (W) atoms are located at the corners of a cubic la atom at the center of cube. The formula for the (b) NaWO₃ (d) NaWO₄
108.	The amount of KMnO ₄ required to prepare 1 KMnO ₄ is reduced to K ₂ MnO ₄ is	00 ml of 0.1 N solution in alkaline medium when
	(a) 1.58 g	(b) 0.52 g
	(c) 3.16 g	(d) 0.31 g
109.	In Bohr's hydrogen atom, the electronic tran the following is	sition emitting light of longest wavelength among
	(a) $n = 5$ to $n = 4$	(b) $n = 4 \text{ to } n = 3$
	(c) $n = 3 \text{ to } n = 2$	(d) $n = 4 \text{ to } n = 2$
	12	
Space for rough work		
-	Entrance 1	Entrance

- 110. If E_1 , E_2 and E_3 represent respectively the kinetic energies of an electron, α -particle and a proton, each having same de-Broglie's wave length, then
 - (a) $E_1 > E_3 > E_2$


(b) $E_2 > E_3 > E_1$

(c) $E_1 > E_2 > E_3$


- (d) $E_1 = E_2 = E_3$
- **111.** To transform , initial steps could be into
 - (a) Nitration followed by Friedel-Crafts alkylation.
 - (b) Friedel–Crafts alkylation followed by nitration.
 - (c) Nitration followed by Friedel-Crafts acylation.
 - (d) Friedel-Crafts acylation followed by Clemmensen's reduction followed by nitration.
- 112. Which of the following compound is optically active?

113. Buff coloured precipitate is obtained when FeCl₃ is treated with

- **115.** The standard heat of formation values of $SF_6(g)$, S(g) and F(g) are: -1100, 275 and 80 kJ mol^{-1} respectively. Then the average S F bond energy in SF_6 would be
 - (a) 301 kJ mol^{-1}
- (b) 320 kJ mol⁻¹
- (c) 309 kJ mol^{-1}
- (d) 280 kJ mol⁻¹
- **116.** The oxidation of oxalic acid by acidified KMnO₄ becomes fast as the reaction progresses due to:
 - (a) auto catalysis by Mn⁺²
- (b) presence of SO_4^{-2}

(c) presence of K⁺

- (d) presence of MnO₄
- 117. Which of the following is/are diamagnetic?
 - (i) Ni(CO)₄

(ii) [NiCl₄]²-

 $(iii)[Ni(CN)_4]^{2-}$

 $(iv)[Fe(H_2O)_6]^2$

(a) (i) only

(b) (ii) only

(c) (i) and (iii) only

- (d) (iv) only
- 118. During the electrolysis of aqueous nitric acid solution using Pt electrodes
 - (a) O_2 is liberated at the cathode.
- (b) N_2 is liberated at the anode.
- (c) O_2 is liberated at the anode.
- (d) H₂ is liberated at the anode.

- 119. Colloidal solution is
 - (a) true solution.

(b) suspension.

(c) heterogeneous sol.

- (d) homogenous sol.
- **120.** To make E_{cell} of the following concentration cell positive, what should be the relative concentration of Cl^- ions in the two half cells?

$$Pt \mid Cl_2 (1 \text{ atm}) \mid Cl^-(C_1) \parallel Cl^-(C_2) \mid Cl_2 (1 \text{ atm}) \mid Pt$$

(a) $C_1 > C_2$

(b) $C_1 < C_2$

(c) $C_1 = C_2$

(d) E_{cell} cannot be positive

