flituee Solutions to IITJEE-2004 Mains Paper

 Chemistry

 Chemistry}

Time: 2 hours

Note: Question number 1 to 10 carries 2 marks each and 11 to 20 carries 4 marks each.

1. For the given reaction
$\mathrm{A}+\mathrm{B} \longrightarrow$ Products
Following data were given
Initial conc. $(\mathrm{m} / \mathrm{L})$. Initial conc. $(\mathrm{m} / \mathrm{L}) \quad$ Initial rate $\left[\mathrm{mL}^{-1} \mathrm{~s}^{-1}\right]$
[A]
0.1 [B]
0.2
$0.1 \quad 0.2$

Initial rate $\left[\mathrm{mL}^{-1} \mathrm{~s}^{-1}\right]$
0.05
0.1
0.05
a) Write the rate equation.
b) Calculate the rate constant.

Sol. a) Let the order w.r.t A \& B are x any y respectively
$\mathrm{r}=\mathrm{K}[\mathrm{A}]^{\mathrm{x}}[\mathrm{B}]^{\mathrm{y}}$
$0.05=K[0.1]^{\mathrm{x}}[0.1]^{\mathrm{y}}$
$0.1=K[0.2]^{\mathrm{x}}[0.1]^{\mathrm{y}}$
or $2=[2]^{x}$
$\mathrm{x}=1$
$0.05=\mathrm{K}[0.1]^{\mathrm{x}}[0.1]^{\mathrm{y}}$
$0.05=K[0.1]^{\mathrm{x}}[0.2]^{\mathrm{y}}$
$1=[2]^{\mathrm{y}}$
$y=0$
b) rate equation $=\mathrm{r}=\mathrm{K}[\mathrm{A}][\mathrm{B}]^{0}$
$0.1=\mathrm{K}[0.2]$
$\mathrm{K}=0.5 \mathrm{Sec}^{-1}$
2. $\quad 100 \mathrm{ml}$ of a liquid contained in an isolated container at a pressure of 1 bar. The pressure is steeply increased to 100 bar. The volume of the liquid is decreased by 1 ml at this constant pressure. Find the $\Delta \mathrm{H} \& \Delta \mathrm{U}$.

Sol. $\quad \Delta H=0, \Delta q_{p}=\Delta U-W$
$\mathrm{W}=\mathrm{PdV}$
$=100 \times 1 \mathrm{atmmL}$
$=10^{-2} \mathrm{KJ}=\Delta \mathrm{U}$
3. Draw the shape of XeF_{4} and OSF_{4} according to VSEPR theory. Show the lone pair of electrons on the central atom

Sol.

(Trigonal bipyramidal)
($\mathrm{sp}^{3} \mathrm{~d}$)
4. The structure of D-Glucose is as follows

Sol.

5. a) Draw New mann`s projection for the less stable staggered form of butane.
b) Relatively less stability of the staggered form is due to
i) Torsional strain.
ii) Vander Waal's strain.
iii) Combination of the above two.

Sol. a)

b) Less stability is due to Vander Waal's strain
6. Arrange the following oxides in the increasing order of Bronsted basicity.

$$
\mathrm{Cl}_{2} \mathrm{O}_{7}, \mathrm{BaO}, \mathrm{SO}_{3}, \mathrm{CO}_{2}, \mathrm{~B}_{2} \mathrm{O}_{3}
$$

Sol. $\mathrm{Cl}_{2} \mathrm{O}_{7}<\mathrm{SO}_{3}<\mathrm{CO}_{2}<\mathrm{B}_{2} \mathrm{O}_{3}<\mathrm{BaO}$
7. AlF_{3} is insoluble in anhydrous HF but when little KF is added to the compound it becomes soluble. On addition of $\mathrm{BF}_{3}, \mathrm{AlF}_{3}$ is precipitated. Write the balanced chemical equations.

Sol. $\quad 3 \mathrm{KF}+\mathrm{AlF}_{3} \longrightarrow \mathrm{~K}_{3} \mathrm{AlF}_{6}$
$\mathrm{K}_{3} \mathrm{AlF}_{6}+3 \mathrm{BF}_{3} \longrightarrow \mathrm{AlF}_{3}+3 \mathrm{KBF}_{4}$
8. The crystal AB (rock salt structure) has molecular weight 6.023 y amu . where y is an arbitrary number in amu.. If the minimum distance between cation \& anion is $\mathrm{y}^{1 / 3} \mathrm{~nm}$ and the observed density is $20 \mathrm{Kg} / \mathrm{m}^{3}$. Find the
a) density in $\mathrm{Kg} / \mathrm{m}^{3}$ and
b) type of defect

IIT-JEE 2004-M-3

Sol. a) Density $=\frac{4 \times 6.023 \times y}{6.023 \times 10^{23} \times 8 \times y \times 10^{-27}} \quad\left[\right.$ Since $\left.a=2 y^{1 / 3}\right]$

$$
\begin{aligned}
& =5 \times 10^{3} \mathrm{~g} / \mathrm{m}^{3} \\
& =5 \mathrm{Kg} / \mathrm{m}^{3}
\end{aligned}
$$

b) Since the (density) calculated $<$ density observed, it means the defect is metal excess defect.
9. Which of the following is more acidic and why?

Sol.

is more acidic due to - inductive effect of fluorine
10. 7-bromo-1,3,5-cycloheptatriene exists as ionic species in aqueous solution while 5-bromo-1,3 cyclopentadiene doesn't ionise even in presence of $\mathrm{Ag}^{+}(\mathrm{aq})$, Explain.

Sol.

11. a) The schrodinger wave equation for hydrogen atoms is
$\Psi_{2 \mathrm{~s}}=\frac{1}{4(2 \pi)^{1 / 2}}\left(\frac{1}{a_{0}}\right)^{3 / 2}\left(2-\frac{r}{a_{0}}\right) \mathrm{e}^{-\mathrm{r} / \mathrm{a}}$
Where a_{0} is Bohr's radius. Let the radial node in $2 s$ be at r_{0}. Then find r in terms of a_{0}.
b) A base ball having mass 100 g moves with velocity $100 \mathrm{~m} / \mathrm{sec}$. Find out the value of wave length of base ball.
c) ${ }_{92} \mathrm{X}^{234} \xrightarrow[-6 \beta]{-7 \alpha} \mathrm{Y}$. Find out atomic number, mass number of Y and identify it.

Sol. a) $\psi_{2 \mathrm{~s}}^{2}=$ probability of finding electrons at any place
$\therefore \Psi^{2}=0$ at node

IIT-JEE 2004-M-4

$\therefore \Psi^{2}=0=\frac{1}{4} \frac{1}{\sqrt{2 \pi}}\left(\frac{1}{a^{0}}\right)^{3}\left(2-\frac{r}{a_{0}}\right)^{2} \times \mathrm{e}^{-\mathrm{r} / \mathrm{a}_{0}}$

$$
\left(2-\frac{\mathrm{r}}{\mathrm{a}_{0}}\right)=0 \Rightarrow 2=\frac{\mathrm{r}}{\mathrm{a}_{0}} \Rightarrow 2 \mathrm{a}_{0}=\mathrm{r}
$$

b) $\lambda=\frac{\mathrm{h}}{\mathrm{mv}}=\frac{6.626 \times 10^{-34}}{100 \times 10^{-3} \times 100}$ $\lambda=6.626 \times 10^{-35} \mathrm{~m}=6.626 \times 10^{-25} \mathrm{~A}^{\circ}$
c) $\mathrm{Yis}{ }_{84} \mathrm{Po}^{206}$
12. On the basis of ground state electronic configuration arrange the following molecules in increasing O-O bond length order.
$\mathrm{KO}_{2}, \mathrm{O}_{2}, \mathrm{O}_{2}\left[\mathrm{AsF}_{6}\right]$.
Sol. $\quad O_{2}=\sigma 1 s^{2}, \sigma^{*} 1 s^{2}, \sigma 2 s^{2}, \sigma^{*} 2 s^{2}, \sigma 2 p_{x}^{2}\left\{\begin{array}{l}\pi 2 p_{y}^{2} \\ \pi 2 p_{z}^{2}\end{array}\right\}\left\{\begin{array}{l}\pi^{*} 2 p_{y}^{1} \\ \pi^{*} 2 p_{z}^{1}\end{array}\right\}$
bond order $=\frac{10-6}{2}=2$
$\mathrm{O}_{2}^{-}=\sigma_{1 s^{2}}, \sigma^{*}{ }_{1 s^{2}}, \sigma_{2 s^{2}}, \sigma^{*} 2 \mathrm{~s}^{2}, \sigma_{2 P_{x}^{2}}\left\{\begin{array}{l}\pi 2 P_{y}^{2} \\ \pi 2 \mathrm{P}_{z^{2}}^{2}\end{array}\right\}\left\{\begin{array}{l}\pi^{*} 2 P_{y}^{2} \\ \pi^{2} 2 P_{z}^{1}\end{array}\right\}$ in $\left[\mathrm{KO}_{2}\right]$
bond order $=\frac{10-7}{2}=\frac{3}{2}$

in $\left[\mathrm{O}_{2}\left(\mathrm{AsF}_{6}\right)\right]$
bond order $\frac{10-5}{2}=\frac{5}{2}$
Bond length order is $\mathrm{O}_{2}^{+}<\mathrm{O}_{2}<\mathrm{O}_{2}^{-}$
13. a) In the following equilibrium
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$
when 5 moles of each are taken, the temperature is kept at 298 K the total pressure was found to be 20 bar. Given that

$$
\begin{aligned}
& \Delta \mathrm{G}_{\mathrm{f}}^{0}\left(\mathrm{~N}_{2} \mathrm{O}_{4}\right)=100 \mathrm{KJ} \\
& \Delta \mathrm{G}_{\mathrm{f}}^{0}\left(\mathrm{NO}_{2}\right)=50 \mathrm{KJ}
\end{aligned}
$$

i) Find ΔG of the reaction
ii) The direction of the reaction in which the equilibrium shifts
b) A graph is plotted for a real gas which follows Vander Waal's equation with PV_{m} taken on Y - axis \& P on X - axis. Find the intercept of the line where V_{m} is molar volume
Sol. a) i) $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$

$$
\begin{aligned}
& \text { Reaction quotient }=\frac{\mathrm{P}_{\mathrm{NO}_{2}}^{2}}{\mathrm{P}_{\mathrm{N}_{2} \mathrm{O}_{4}}}=\frac{100}{10}=10 \mathrm{~atm} \\
& \Delta \mathrm{G}^{\circ} \text { reaction }=2 \Delta \mathrm{G}_{\mathrm{f}}^{\circ}\left(\mathrm{NO}_{2}\right)-\Delta \mathrm{G}_{\mathrm{f}}^{\circ}\left(\mathrm{N}_{2} \mathrm{O}_{4}\right) \\
& 0=100-100 \\
& \Delta \mathrm{G}=\Delta \mathrm{G}^{\circ}+\mathrm{RT} \ln \mathrm{ln} \\
& \therefore \Delta \mathrm{G}=\mathrm{RT} \ln \mathrm{Q} \\
& =2.303 \times .082 \times 298 \times \log 9.9=56.0304 \text { Lit atm. }=\text { Positive }
\end{aligned}
$$

IIT-JEE 2004-M-5

ii) Therefore reaction will shift towards backward direction.
b) $\quad \therefore\left(\mathrm{P}+\frac{\mathrm{a}}{\mathrm{v}_{\mathrm{m}}{ }^{2}}\right)\left(\mathrm{v}_{\mathrm{m}}-\mathrm{b}\right)=\mathrm{RT}$
$\left(P+\frac{\mathrm{aP}^{2}}{(\mathrm{PV})^{2}}\right)\left(\frac{\mathrm{PV}}{\mathrm{P}}-\mathrm{b}\right)=\mathrm{RT}$
$\left.\left.[\mathrm{PV})^{2} \mathrm{P}+\mathrm{aP}^{2}\right][(\mathrm{PV})-\mathrm{b})\right]=\mathrm{P}(\mathrm{PV})^{2} \mathrm{RT}$
$\Rightarrow \mathrm{P}\left[(\mathrm{PV})^{2}+\mathrm{aP}\right](\mathrm{PV}-\mathrm{bP})=\mathrm{P}(\mathrm{PV})^{2} \mathrm{RT}$
Put $\mathrm{P}=0$
$\Rightarrow(\mathrm{PV})^{3}=(\mathrm{PV})^{2} \mathrm{RT}$
Intercept $=R T$
14. a) $1.22 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$ is added into two solvent and data of $\Delta \mathrm{T}_{\mathrm{b}}$ and K_{b} are given as:-
i) In $100 \mathrm{~g} \mathrm{CH}_{3} \mathrm{COCH}_{3} \quad \Delta \mathrm{~T}_{\mathrm{b}}=0.17$
$\mathrm{K}_{\mathrm{b}}=1.7 \mathrm{Kg}$ Kelvin $/ \mathrm{mol}$
ii) In 100 g benzene, $\quad \Delta \mathrm{T}_{\mathrm{b}}=0.13$ and $\mathrm{K}_{\mathrm{b}}=2.6 \mathrm{Kg} \mathrm{Kelvin} / \mathrm{mol}$

Find out the molecular weight of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$ in both the cases and interpret the result.
b) 0.1 M of HA is titrated with 0.1 M NaOH , calculate the pH at end point. Given $\mathrm{Ka}(\mathrm{HA})=5 \times 10^{-6}$ and α <<1

Sol. a) In first case
i) $\Delta T_{b}=K_{b} \times m$

$$
0.17=1.7 \times \frac{1.22}{\mathrm{M} \times 100 \times 10^{-3}} \Rightarrow \mathrm{M}=122
$$

ii) In second case

$$
\begin{aligned}
& \Delta \mathrm{T}_{\mathrm{b}}=\mathrm{K}_{\mathrm{b}} \times \mathrm{m} \\
& 0.13=2.6 \times \frac{1.22}{\mathrm{M}^{\prime} \times 100 \times 10^{-3}} \\
& \mathrm{M}^{\prime}=244
\end{aligned}
$$

Benzoic acid dimerises in benzene
b) Since at end point molarity of salt $==\frac{0.1}{2} \mathrm{M}$
$\because \mathrm{pH}$ of salt of weak acid and strong base
$\mathrm{pH}=\frac{\left(\mathrm{pK}_{\mathrm{w}}+\mathrm{pK}_{\mathrm{a}}+\log _{\mathrm{c}}\right)}{2}=\frac{1}{2}[14+5.3010+[-1.3010] \Rightarrow \mathrm{pH}=9$.
15.

Convert

in not more than four steps. Also mention the temp and reaction condition.

Sol.

16.

Identify A to D.

Sol.

17. $\mathrm{A}_{1} \& \mathrm{~A}_{2}$ are two ores of metal M. A_{1} on calcination gives black precipitate, CO_{2} \& water.

$\mathrm{A}_{2} \xrightarrow{\text { roasting }}$ Metal + gas

$$
\downarrow \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{H}_{2} \mathrm{SO}_{4}
$$

green colour
Sol. $\quad \mathrm{A}_{1}=\mathrm{Cu}(\mathrm{OH})_{2} \mathrm{CuCO}_{3}$
$\mathrm{A}_{2}=\mathrm{Cu}_{2} \mathrm{~S}$
$\mathrm{Cu}(\mathrm{OH})_{2} \mathrm{CuCO}_{3} \xrightarrow{\text { Calcination }} 2 \mathrm{CuO}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
(Al)
(Black Solid)
$\mathrm{Cu}(\mathrm{OH})_{2} \mathrm{CuCO}_{3} \xrightarrow{\text { dilHCl }} \mathrm{CuCl}_{2}+\mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$
$2 \mathrm{CuCl}_{2}+4 \mathrm{KI} \rightarrow \mathrm{Cu}_{2} \mathrm{l}_{2}+\mathrm{I}_{2}+4 \mathrm{KCl}$
$2 \mathrm{Cu}_{2} \mathrm{~S}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Cu}_{2} \mathrm{O}+2 \mathrm{SO}_{2}$
$\left(\mathrm{A}_{2}\right)$
$\mathrm{Cu}_{2} \mathrm{~S}+2 \mathrm{Cu}_{2} \mathrm{O} \rightarrow 6 \mathrm{Cu}+\mathrm{SO}_{2}$
18. NiCl_{2} in the presence of dimethyl glyoxime (DMG) gives a complex which precipitates in the presence of $\mathrm{NH}_{4} \mathrm{OH}$, giving a bright red colour.
a) Draw its structure \& show H -bonding
b) Give oxidation state of $\mathrm{Ni} \&$ its hybridisation.
c) Predict wether it is paramagnetic or diamagnetic.

Sol.

Oxidation state of nickel is +2 and hybridization is dsp^{2}
$\mu \mathrm{s}=\sqrt{\mathrm{n}(\mathrm{n}+2)}$ B. M
$\mathrm{n}=0$
$\therefore \mu \mathrm{s}=0$
19. Find the equilibrium constant for the reaction
$\mathrm{Cu}^{+2}+\mathrm{In}^{+2} \rightleftharpoons \mathrm{Cu}^{+}+\mathrm{In}^{+3}$
Given that
$\mathrm{E}_{\mathrm{Cu}^{+2}}^{\circ} / \mathrm{Cu}^{+}=0.15 \mathrm{~V}$
$\mathrm{E}_{\mathrm{In}^{+2}}^{\circ} /{ }_{\mathrm{In}^{+}}=-0.4 \mathrm{~V}$
$\mathrm{E}_{\mathrm{In}^{+3}}^{\circ} /{ }_{\mathrm{In}^{+}}=-0.42 \mathrm{~V}$
Sol. $\mathrm{Cu}^{+2}+\mathrm{e}^{-} \longrightarrow \mathrm{Cu}^{+}$
$\Delta \mathrm{G}_{1}{ }^{0}=-0.15 \mathrm{~F}$
$\mathrm{In}^{+2}+\mathrm{e}^{-} \longrightarrow \mathrm{In}^{+}+$ $\Delta \mathrm{G}_{2}{ }^{0}=+0.4 \mathrm{~F}$
$\mathrm{In}^{+} \longrightarrow \mathrm{In}^{+3}+2 \mathrm{e}^{-} \quad \Delta \mathrm{G}_{3}{ }^{0}=-0.84 \mathrm{~F}$
$\mathrm{Cu}^{+2}+\mathrm{In}^{+2} \rightleftharpoons \mathrm{Cu}^{+}+\mathrm{In}^{+3} \quad \Delta \mathrm{G}^{0}=-0.59 \mathrm{~F}$
$-\mathrm{nFE}^{\circ}=-0.59 \mathrm{~F}$
$-\mathrm{E}_{\text {cell }}^{0} \mathrm{~F}=-0.59 \mathrm{~F}$
$\mathrm{E}_{\text {Cell }}^{0}=0.59$
$\mathrm{E}_{\text {cell }}=\mathrm{E}^{\circ}-\frac{0.0591}{\mathrm{n}} \log \mathrm{K}_{\mathrm{c}}$
$0.59=\frac{0.0591}{1} \log \mathrm{Kc}$
$\mathrm{K}_{\mathrm{c}}=10^{10}$
20. An organic compound ' P ' having the molecular formula $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}$ treated with dil $\mathrm{H}_{2} \mathrm{SO}_{4}$ gives two compounds, $\mathrm{Q} \& \mathrm{R}$ both gives positive iodoform test. The reaction of $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}$ with dil $\mathrm{H}_{2} \mathrm{SO}_{4}$ gives reaction 10^{15} times faster then ethylene. Identify organic compound of Q \& R. Give the reason for the extra stability of P .

Sol.

P is stabilized by resonance

Note: FIITJEG solutions to IIT-JEE, 2004 Mains Papers created using memory retention of select fIITJE students appeared in this test and hence may not exactly be the same as the original paper. However, every effort has been made to reproduce the original paper in the interest of the aspiring students.

